
Energy-Efficient Transaction Serialization

Daniel Evans

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

at

Seidenberg School of Computer Science and Information

Systems

Pace University

March 2020

Abstract

Energy-Efficient Transaction Serialization

Daniel Evans

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

Seidenberg School of Computer Science and Information Systems
Pace University

March 2020

This dissertation presents two designs, the Transaction Serial Format (TSF) and the
Transaction Array Model (TAM). Together, they provide full, efficient, transaction
serialization facilities for devices with limited onboard energy, such as those in an
Internet of Things (IoT) network. TSF provides a compact, non-parsed, format that
requires minimal processing for transaction deserialization. TAM provides an inter-
nal data structure that needs minimal dynamic storage and directly uses the elements
of TSF. The simple lexical units of TSF do not require parsing. The lexical units
contain enough information to allocate the internal TAM data structure efficiently.
TSF generality is equivalent to XML and JSON. TSF represents any XML docu-
ment or JSON object without loss of information, including whitespace. The XML
equivalence provides a foundation for the performance comparisons. A performance
comparison of a C reference implementation of TSF and TAM to the popular Expat
XML library, also written in C, shows that TSF reduces deserialization processor
time by more than 80%.

Acknowledgements

This dissertation brings to completion a process started in 1995 when I was first ad-
mitted to the Computer Science Ph.D. program at the State University of New York
at Stony Brook. My employer at the time, Periphonics, was supportive, providing
tuition reimbursements and flexible hours, and I am grateful for that support. But,
as Robert Burns wrote, ”The best laid schemes o’ mice an’ men gang aft agley”.
Periphonics was bought by Nortel in 2000, and the downsizing began. Over the
course of the next three years, over six hundred Long Island jobs were lost. Nortel
ultimately went bankrupt, but that is a story for B-school study.

The hiatus in my Ph.D pursuit lasted until 2016 when I met Dr. Lixin Tao, and
he admitted me to the Pace University DPS program. He was continually support-
ive, and allowed me to transfer to the Pace Computer Science Ph.D. program in
2018. The transfer would not have been possible without the support of Dr. Paul
Benjamin, the director of the Ph.D. program, who reviewed my work at Stony Brook
and allowed some transfers. Dr. Tao continued as my dissertation advisor after the
transfer, provided valuable guidance, and assisting with publication. My work would
not have been possible without his aid and encouragement.

In addition to Dr. Tao, the members of my committee, Dr. Charles Tappert and
Dr. Ronald Frank, have always been willing to help on short notice. Dr. Tappert
and Dr. Frank created the CS837 Quantum Computing course at Pace, introducing
me to a topic with new research possibilities. Dr. Tappert mentored me on several
special projects. Dr. Frank was willing to attend my defense by video, as he was on
leave at the time. I appreciate all their support.

Throughout my quixotic pursuit, my wife Susan, and my two sons John and
Mark, have always been encouraging, and never complained about the time taken
from other activities.

As a Math major and senior at New Mexico State University, I was first exposed
to computers when the brand new Computer Science department, and its chairman,
Dr. J. Mack Adams, made an IBM 1130 available to all students after hours. Any-
one could write Fortran or 1130 Assembler programs, punch them on cards, and read
them into the computer late at night, as long as you got there before the EE’s who
would run power network simulations that seemed to take hours. New Mexico State

was an ideal university. It was large enough to have something for everyone. It had
cattle pens one one side of the campus and a small aircraft runway on the other side.
In addition to my Math requirements, I was able to take Electricity for Non-Majors,
Machine Tool Theory and Use, Mathematical Physics, History of the English Lan-
guage, Theater Arts, Philosophy, Sociology, Modern American Fiction (taught by
Mark Medoff, the author of ”Children of a Lesser God”), Archery, Classical Music,
Money and Banking, and Astronomy (taught by Clyde Tombaugh, the discover of
Pluto). Most of all, NMSU provided the Physical Science Laboratory for sponsored
research. PSL in turn hired co-ops, students who worked for two semesters in the
field, then returned for two semesters at the university, in a continuous work-study
rotation. I was one of the co-ops, and the program allowed me to pay for and earn my
BS degree. It also sent me to Anchorage, Shemya, Knob Noster, Kahului, Upernavik,
and Godthaab. NMSU, PSL, and the professors I met there, laid the foundation for
person I have become, and I am forever grateful.

Finally, I must mention the context within which this degree has been completed.
I am reminded of the Marquez title ”Love in the Time of Cholera”. My defense was
two weeks before the corona virus, Covid-19, began its relentless march on New York
City. It has now forced Pace, and all New York universities, to shift completely to
remote classes held through video connections. Pace has currently postponed gradu-
ation ceremonies. The future, particularly for older members of society, is uncertain.
Still, I look back on my work since entering Pace with enjoyment, and I hope to have
the opportunity use the results of my education.

Daniel Evans

March 2020

Contents

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Introduction . 1
1.2 Serialization Overview . 2
1.3 TSF Design Objectives . 8
1.4 Summary . 11

2 TSF Design 12
2.1 Goals . 12
2.2 Design . 13
2.3 Lexical Simplicity . 15

3 TSF JSON Equivalence 20
3.1 The Application of TSF to JSON . 21

3.1.1 Primitive Types . 21
3.1.2 Collections . 21
3.1.3 Arrays . 22
3.1.4 JSON Names Containing TSF Type Characters 22

3.2 String Export . 23
3.2.1 Exporting TSF as JSON Strings 23
3.2.2 Exporting TSF Serializations of JSON as XML Strings 23

4 Transaction Array Model 25
4.1 TAM Creation . 26
4.2 Value Storage . 28
4.3 The TAM Root Node . 28

i

5 Deserialization - Proof of Program Correctness 31
5.1 Inference Rules . 31

5.1.1 Assignment . 32
5.1.2 If Statement . 32
5.1.3 While Loop . 33
5.1.4 Restricted Procedure (Method) call 34
5.1.5 Return . 34

5.2 Proof Example . 35
5.3 Proof of Deserialization Helper Methods 36

5.3.1 Proof of numericValue() . 37
5.3.2 Proof of fieldLength() . 39

5.4 Deserialization . 42
5.4.1 Proof of deserialize() . 43
5.4.2 Proof of processUCElems() . 44

6 XML Equivalence: An Application of TSF 48
6.1 Relevant XML Definitions . 48

6.1.1 XML Names . 49
6.1.2 Tag Names and Attribute Names 49

6.2 TSF Types for XML . 50
6.2.1 The Syntax of XML Lexical Units 51
6.2.2 DOCTYPEs, Processing Instructions, Comments 52

6.3 XML Issues . 53
6.3.1 Namespaces . 53
6.3.2 Character and Entity References 53
6.3.3 Encoding . 54
6.3.4 XML Document Reconstruction 55

6.4 The Overhead of TSF . 56
6.5 Examples . 57
6.6 Embedding TSF in XML . 58

7 TSF/TAM Performance 59
7.1 Test Files . 59
7.2 Performance of the C/C++ Implementation Compared to Libexpat . 62

8 Conclusion 67

9 Future Work 68

ii

Bibliography 70

A Listings 76
A.1 NpxUCElement.h . 77
A.2 NpxUCElement.c . 78
A.3 Serialization/Deserialization Code . 82

iii

List of Figures

1.1 TSF Complete Lexical Structure . 10

2.1 TSF Syntax Diagrams . 17

4.1 A Transaction Array Model Node (TAMNode) 26
4.2 TSF Transaction With Three Top Level PLU’s 29
4.3 The Root Node With Three LU’s . 29
4.4 A TAMNode With a Single Named SLU 30

6.1 The Syntax of an XML name . 49
6.2 The Syntax of an XML Open Tag . 49
6.3 The Syntax of an XML Document as a TSF String 51
6.4 TSFString Length Unit Syntax . 51
6.5 TSFString Count Unit Syntax . 52
6.6 TSFString With Outside XML Elements 53
6.7 TSF Overhead . 57

iv

List of Tables

2.1 TSF Message Definitions . 14
2.2 TSF Right Recursive Syntax . 16
2.3 First and Follow Symbols for the TSF Syntax 17

5.1 Proof of method iexp() . 36
5.2 Proof of numericValue() . 38
5.3 Proof(2) of method numericValue() 38
5.4 Proof of method fieldLength() . 41
5.5 Proof of method deserialize() . 44
5.6 Informal Proof of Method processElems() 47

6.1 TSF Overhead . 56

7.1 Test File Descriptions . 60
7.2 Test File Size Comparisons . 60
7.3 Test File Characteristics . 61
7.4 Five Run Deserialization Performance Using a Libexpat C library (mi-

croseconds CPU time) . 64
7.5 Five Run Deserialization Performance Using a Wide Character C Im-

plementation of the TSF Algorithm (microseconds CPU time) 64
7.6 Five Run Deserialization Performance Using an 8-bit C Implementa-

tion of the TSF Algorithm (microseconds CPU time) 65
7.7 Deserialization Performance Improvement Factor, TSF vs Libexpat . 65

v

Listings

4.1 A TAMNode . 27
5.1 Method iexp() to Compute 2 to the nth Power 35
5.2 Complex while Loop . 36
5.3 A Complex while Loop Rendered for Proof 37
5.4 Method numericValue() . 37
5.5 Method fieldLength() . 39
5.6 Method deserialize() . 43
5.7 Method processElems() . 45
A.1 NpxElement.h . 77
A.2 NpxElement.c . 78
A.3 NpxDeserial.c . 82

vi

Chapter 1

Introduction

1.1 Introduction

The rapid development of the Internet of Things (IoT) has renewed interest in trans-

action processing efficiency. The paper ”Energy Efficiency: A New Concern for Ap-

plication Software Developers” [1] recently detailed the interaction between energy

issues and software in IoT and mobile devices: ”. . . wasteful, poorly optimized soft-

ware can deplete a device’s battery much faster than necessary.” The initial energy

supply of many IoT sensor devices limits their deployment lifetime. These devices

sense information and transmit the results of sensing. They receive instruction from

remote controllers. They continually serialize and deserialize transactions to and

from a communications medium. Any reduction in processor time used by transac-

tion serialization/deserialization contributes to an increase of the deployed lifetime

of an IoT device. This work describes the Transaction Serial Format (TSF), whose

primary goal is to use as little energy as possible to perform the serialization/de-

serialization tasks. The Transaction Array Model (TAM) supports the efficiency of

TSF. Although a dynamic data structure, TAM directly integrates information from

the TSF format.

1

1.2 Serialization Overview

The need for serialization and deserialization, converting data to and from serial

media such as communications networks and long-term storage devices, has spawned

many designs. Wikipedia lists 35 different formats in its ”Comparison of Data Seri-

alization Formats” page. The differences are many and the reasons for development

of each are not always clear. However, they have a common feature: the need to

preserve data structure. The data structuring facilities of random access memory

are not applicable when accessing data sequentially from beginning to end one byte

at a time.

Serialization formats generally divide into two categories: formats specific to an

application, and general formats intended for use by any application. Examples

of application formats are Apache Avro [2] and Apache Parquet [3] both designed

for the Hadoop parallel processing system. Binary JSON (BSON) [4] adds binary

representations and extensibility to JSON-structured data in the MongoDB database

system. Also in this category are language-specific serializations such as Java Object

Serialization [5], Python Pickle [6], and Perl’s DataDumper module [7], the first

of many PERL serialization modules. Remote Procedure Invocation produced a

number of formats designed to marshal parameters for a remote procedure call and

to return the results. The Common Object Request Broker Architecture (CORBA)

specifies the InterORB Protocol [8] for communication between clients and object

request brokers. The Java library provides the Remote Method Invocation (Java

RMI) [9] for Java programs to invoke remote methods available on any machine

running an RMI server. D-Bus [10] is designed for both interprocess control on a

local machine and remote invocation. Apache Thrift [11] is a design for cross-platform

RPC. XML-based RPC serialization came from Microsoft in the form of XML-RPC

[12], the ancestor to the World Wide Web Consortium (W3C) SOAP standard [13].

General serialization formats are for any application, and TSF is in this category.

2

In addition to the basic requirement of preserving data structure, many formats

incorporate additional features that:

• reduce the size of serialized data to minimize data transmitted

• use an external schema to describe the serial format(s)

• work with multiple character encodings, such as UTF-8, UCS-2, and UCS-4

• use only characters recognized by a text editor so that the serialized data is

human-readable and easily changed

• address some additional need, such as machine-independent data definitions

that can be exchanged by machines of different architecture, or the restriction

to 7-bit or 8-bit clean so that data can be transmitted through gateways and

across networks with differing characteristics

The following examines serialization formats that incorporate one or more of these

features, and note how TSF compares to them.

Data compaction was an early issue for the telecommunications industry when trans-

mission speeds were much slower than they are today. The International Telecom-

munications Union (ITU), the standards body for international telecommunications,

released in 1984, as part of CCITT-X.409, the Abstract Syntax Notation, version 1

(ASN.1), an interface description language (IDL). In 1988, ASN.1 became a separate

standard, X.208 [14]. ASN.1 has gone through several revisions and is currently at

Revision 5, but has not lost its original name, ASN.1.

ASN.1 is a declarative language (also called a schema language) for describing mes-

sages as general structures of arbitrary data types. A schema is a description of the

serialization format, which both sender and receiver have. An ASN.1 schema declares

data types first, and then declares messages as structured sequences of previously

declared data types. ASN.1 provides an extensive set of built-in type constructors

as a foundation for complex types. Every defined type has an unambiguous serial

3

encoding, commonly known as type-length-value encoding. ASN.1’s Basic Encoding

Rules (BER define the rules for serializing data using bit- and byte- aligned fields.

Initial implementations of ASN.1 compiled a schema of data types and message dec-

larations into source code in a language such a C, providing both encoding and

decoding functions. The generated encoding and decoding functions, specific to the

described messages, could in turn be included as source code, or compiled and linked

as a library, with application programs that sent and received the messages. ASN.1

found wide use within the telecommunications industry. A subset of ASN.1 became

the Simple Network Management Protocol’s language for describing SNMP’s MIBs

(Management Information Base)[15], which are abstract descriptions of network de-

vices subject to management by the protocol. ASN.1 also found use in applications

that use some form of the X.500 series of standards from the CCITT, such as the

exchange of cryptographic metadata with X.509 certificates [16].

ASN.1 uses type codes and a schema to define and preserve structure. Another

common structure-preservation technique is the use of delimiters that signify the

beginning and end of data and provide for data nesting. XML [17] and JSON [18], two

of the most popular formats in use today, both use this technique. XML uses named

parentheses, called open and close tags, to delimit and nest data. JSON uses two

types of structure delimiters, the characters ”[” and ”]” for arrays, and the characters

”” and ”” for collections, which are named sequences of data. Collections synonyms

are associative arrays, maps, hashes, or dictionaries in other computer languages.

The YAML format [19] uses indentation and the natural delimiting provided by

line end characters to preserve data structuring. The lines in the YAML format

have additional syntax, which may optionally include ”flow” formats, close to the

delimited design of JSON. YAML is also user editable with any general text editor

program. Another delimited, editable format is ”s-Expressions”, originally designed

by John McCarthy, the inventor of Lisp, and described in the Internet Memo [20] by

Ronald Rivest. Like Lisp, it uses left and right parenthesis as delimiters and nests

delimited data to provide structure. TSF does not use delimiters to define serialized

structure, but takes an approach that is closer to ASN.1, although without a schema.

4

Although editing is not a design goal, TSF is editable with a normal text editor, if

done carefully to update lengths after adding or deleting characters.

The concern for compact representations appears in many early serialization formats,

coincident with communications speeds slower than today’s. ASN.1’s Basic Encoding

Rules are the prototypical example. Later formats also dealt with compact represen-

tations. XML representation efficiency became an issue soon after XML use became

widespread. The W3C chartered the XML Binary Characterization (XBC) Work-

ing Group and the Efficient XML Interchange (EXI) Working Groups in 2004. Both

groups worked in the area of efficient representation of XML. The XBCWG produced

the first draft of ”XML Binary Characterization Properties” [21] in late 2004. The

EXIWG produced its first draft in mid-2007 [22].

The work of these groups has always been informed by the desire to preserve as

much of the primary XML specification as possible, and to be aware of XML schema

definitions when they exist.

”EXI is schema ”informed”, meaning that it can utilize available schema

information to improve compactness and performance, but does not de-

pend on accurate, complete or current schemas to work.”[22]

The working group ultimately produced a very large code implementation of the

specification and made it publicly available, but it does not appear to have been

widely used1.

In 2012, the W3C-chartered MicroXML Community Group produced the Micro-

XML specification [23]. The justification for MicroXML is at the beginning of the

specification document.

1The entire OpenEXI package download is 355 Mb. Compare this to the total download size of
84Mb for the Expat XML parser.

5

”MicroXML is a subset of XML intended for use in contexts where full

XML is, or is perceived to be, too large and complex. It has been designed

to complement rather than replace XML, JSON and HTML. Like XML,

it is a general format for making use of markup vocabularies rather than

a specific markup vocabulary like HTML.”

MicroXML simplified XML by, among other things, eliminating DOCTYPE’s, name-

spaces, processing instructions, CDATA sections, and character set options. How-

ever, as MicroXML is a subset of XML, no alternate serialization format was pro-

posed.

Improved line speeds resulted in less attention to compact representations, but the

rise of mobile devices with their bandwidth limitations kept compact representations

a concern, as evidenced by the recent Compact Binary Object Representation, de-

scribed in 2013 in RFC 7049 as ”. . . a data format whose design goals include the

possibility of extremely small code size, fairly small message size, . . . ” [24]. However,

alternate compaction techniques have found wider commercial use. Web servers that

download JSON have preprocessed the files to remove non-syntactic whitespace, and

sometimes renaming all the variables to minimize their length, which has the effect of

obscuring the source code. The files can also be processed by a standard compression

algorithm, as all browsers have the ability to process several compression formats.

In TSF, the elimination of redundancies yields some compaction, but compaction is

not a primary motivation for the format. A TSF message is usually slightly smaller

than its JSON equivalent. Any standard compression technique can further reduce

the size.

Schema-based serialization formats tend to be more compact as they can eliminate

some or all type information from the serialization by maintaining it in a separate

schema, generally written in a custom interface description language (IDL). ASN.1

again is the prototypical example. A more recent example is Google’s Protocol

Buffers [25]. Once written, a Protobuf schema compiler generates source code for

6

any supported language. The generated code then is included in any program that

uses the serialization described by the schema. Flatbuffers [26], similar to Protobuf,

can use both its own IDL and that of Protobuf. TSF is not a schema-based serial-

ization, but it does use a technique called ”zero-copy deserialization”, also used by

Flatbuffers, to reduce the number of memory allocations required to construct the

internal representation of a deserialized object.

Differences in machine architecture have motivated some serial formats. The Exter-

nal Data Representation first defined in RFC 1832 in 1995 and subsequently updated

eleven years later in RFC 4502 [27] provides serial representations for standard binary

data types such as signed and unsigned integers, 64-bit integers, called hyper inte-

gers, floating point values, enumerations, fixed length arrays, and more. However,

the popularity of character-based serializations seems to have provided an alternate,

simpler way to handle architecture differences, as conversions from character forms

to internal data types are available on any machine and in every language. TSF

delegates the data format definitions to the application.

Finally, there are two serialization formats that have some coincidental similarity to

TSF. Bencoding, part of the BitTorrent specification[28], serializes string data with

a count followed by a delimiter preceding a data field, similar to TSF. But Bencoding

defines separate structures for lists (arrays) and dictionaries (hashes) and does not

identify occurrences. It also imposes an order on dictionary strings. Binn[29], a more

recent design, uses zero-copying and counts for structures, like TSF, but defines types

using bit fields and varying length binary fields for data lengths and container lengths.

Unlike TSF, it has a number of hard-coded data types, and three containers types,

but it does make a provision for user types.

There are two serialization formats that have some coincidental similarity to TSF.

Bencoding, part of the BitTorrent specification [28], serializes string data with a count

followed by a delimiter preceding a data field, similar to TSF. However, Bencoding

defines separate structures for lists (arrays) and dictionaries (hashes) and does not

7

identify occurrences. It also imposes an order on dictionary strings. Binn [29],

a more recent design, uses zero-copying and counts for structures, like TSF, but

defines types using bit fields and varying length binary fields for data lengths and

container lengths. Unlike TSF, it has a number of hard-coded data types, and three

containers types, but it does make a provision for user types, similar to TSF.

1.3 TSF Design Objectives

Now that TSF has been differentiated by what it isn’t, we following the example set

by CBOR[24] in RFC 7049 and list the design objectives of the Transaction Serial

Format (TSF), in order of importance.

• The format must be efficiently deserialized.

– Deserialization should not require more than a few pages of C code.

– The format must not require parsing for deserialization.

– The format must not use data units smaller than a byte.

– The format must avoid forcing data into specific bit representations.

– Deserialization should not require a schema. Data types should be implied

in the format.

• The design must be general enough to encode popular data formats such as

XML and JSON, as well as other common Internet formats.

– The format must support named and unnamed sequences, such as arrayed

data.

– The format must support named and unnamed collections, such as hashes.

– Data structuring must support collections of sequences, and sequences of

collections.

– TSF is not a streaming format; it does not support unspecified data

lengths or occurrences.

8

• The internal (in memory) representation of a deserialized transaction is integral

to efficiency of the design and must be easily created.

– Dynamic memory allocations should be minimized.

– Data should not need to be copied into the internal representation.

• The format should support user data typing to allow it to be adapted to specific

user applications.

• The internal API must include a standard serialization.

– This is a common sense, ease of use objective.

– Contrast this with XML, which has no serialization API.

• The serial representation should be reasonably compact.

– Compactness is not a primary goal, but the equivalent JSON size is a

compactness target.

– Redundancies such as end tags and extra delimiters should be avoided.

The primary goal of efficiency is a result of the simplicity of the TSF design. Figure

1.1 shows the complete lexical structure of TSF.

9

Figure 1.1: TSF Complete Lexical Structure

The following sections examine the design in detail and discuss the performance

impact of TSF and its sister memory representation, TAM.

10

1.4 Summary

Chapter 1 (this chapter) introduces TSF and differentiates it from related works on

serialization. It presents the goals that have guided the TSF design and summarizes

the complete lexical structure in Figure 1.1

Chapter 2 presents the detailed design of TSF and illustrates TSF message deseri-

alization without parsing. The lexical processing is limited to recognizing a sequence

of digit characters as a number, and scanning to the end of names. The lexical gram-

mar that underlies the TSF design illustrates the simple one-character lookahead

requirement. An informal proof shows the grammar produces TSF lexical units.

Chapter 3 discusses the application of TSF to JSON. It generalizes the definition of

a TSF name, and shows that it is possible to encode JSON data in equivalent TSF.

Chapter 4 presents TAM, and discusses the efficiency considerations which guide

the design.

Chapter 5 presents the functions needed to implement deserialization, and presents

formal proofs of correctness for these functions. The proofs are based on Program

Logic.

Chapter 6 applies TSF to XML. applies TSF to XML. It shows that XML docu-

ments are a series of lexical units when represented in TSF, so that deserialization

does not involve parsing.

Chapter 7 presents a comparison of the performance of deserialization of XML

documents using the Expat C library implementations of the XML SAX parser, and

the C/C++ implementation of TSF/TAM deserialization.

Chapter 8 summarizes the results and discusses the findings.

Appendix A discusses the implementation of TSF/TAM in C, and presents the

API’s for using the TSF/TAM implementation.

11

Chapter 2

TSF Design

2.1 Goals

TSF provides a general serial transaction format. The TSF library deserializes a TSF

transaction to its Transaction Array Model internal format with minimal processing

by compact code. The primary design goals are:

• Minimal processing for message serialization and deserialization

• Simple in-memory representation of a deserialized TSF transaction

• Standard serialization and deserialization API’s

• Elimination of redundant information, such as found in XML and JSON for-

mats

For IoT devices, the benefits are

• Reduced energy usage

• Smaller memory footprint

• Operations with slower, cheaper CPU’s

12

2.2 Design

The elements of a TSF serialized message are lexical units (LU’s), so called because

recognition requires only simple lexical processing. There are two abstract lexical

units. The first is a primitive lexical unit (PLU) that consists of a sequence of digit

characters specifying the data length, a single type character that is not a digit, and

length characters of data. TSF extracts a PLU from a message by lex’ing the length,

recognizing the type, and extracting the corresponding data. The type character

serves to distinguish various PLU types, as desired by the application using TSF.

For example, type characters can distinguish between integers and floating point

numbers.

A PLU can optionally have a name. In a named PLU, the name follows the initial

length and ends with the type character. The name cannot begin with a digit and

cannot contain any type character. In the case of XML-equivalent serialization, this

is a simple restriction. XML tag name and attribute name come from a restricted

character set. For complete generality, the restriction on name characters is removed

with a convention described when we consider JSON, which places no restriction on

the character composition of names.

The second type of TSF lexical unit is the structured lexical unit (SLU). An SLU

consists of a sequence of digit characters specifying the contained unit count, a single

type character which is not a digit, and count subsequent LU’s. An SLU is a container

in the sense that the count identifies the number of immediately contained units.

Knowing the count at the beginning of the unit allows the pre-allocation of needed

storage. An SLU can also optionally have name, with the name having the same

restrictions as the PLU name. Each SLU-contained lexical unit may be any type, a

named or unnamed PLU or SLU. In the case of XML equivalence, SLU’s are used

for XML elements and lists of XML attributes.

13

The second type of TSF lexical unit is the structured lexical unit (SLU). An SLU

consists of a sequence of digit characters specifying the contained unit count, a single

type character, which is not a digit, and count subsequent LU’s. An SLU is a

container in the sense that the count identifies the number of immediately contained

units. Knowing the count at the beginning of the unit allows the pre-allocation of

needed storage. An SLU can also optionally have a name, with the name having the

same location and restrictions as a PLU name. Each SLU-contained lexical unit may

be any type, a named or unnamed PLU or SLU. In the case of XML equivalence,

XML elements and lists of XML attributes are SLUs. For JSON equivalence, arrays

and objects are SLUs. In a TSF message, named and unnamed lexical units occur

in any combination.

Table 2.1 shows the syntax of the TSF lexical units. Syntax descriptions use the

Augmented Backus Naur Form described in the IETF’s RFC5234[30].

Table 2.1: TSF Message Definitions

TSFMessage = 1*LexicalUnits

LexicalUnits = (PLU / SLU)

PLU = Length 0*1Name Type data

SLU = Count 0*1Name Type LexicalUnits

Length = Number

Count = Number

Number = 1*digit

Type = a character that is not a digit or a name character

Name = does not start with a digit, or contain any type character

The actual characters used to indicate types can be chosen to reflect the particular

application. Type characters and name characters are disjoint. As shown in Table

2.1, type and name characters have the following restrictions1.

1All but the first restriction can be removed. See Chapter 3

14

1. types cannot be digits

2. names cannot start with a digit

3. type characters cannot be used in names

2.3 Lexical Simplicity

This section discusses the syntax that describes TSF lexical units and shows that it

requires only the simplest kind of lexical processing, one-character lookahead.

The syntax descriptions shown in Table 2.1 exhibit the lexical simplicity of TSF.

The lexical units of TSF can be recognized using only one lookahead symbol. Each

lexical unit begins with a sequence of numeric characters. The sequence is always

terminated by a non-numeric character that is either the start of a name or a type

character, which determines the type of processing needed to complete the lexical

unit. If the type character implies a PLU, the numeric value is the number of

characters that constitute the value. Thus, in the syntax description, this field is

treated as a terminal symbol. If the type character implies an SLU, the numeric

value is the number of contained lexical units. This number can be used to allocate

the storage needed for the contained lexical units.

The syntax descriptions shown in Table 2.1 exhibit the lexical simplicity of TSF.

The lexical units of TSF can be recognized using only one lookahead symbol. Each

lexical unit begins with a sequence of numeric characters. The sequence is always

terminated by a non-numeric character that is either the start of a name or a type

character. If the type character implies a PLU, the numeric value is the number of

characters that constitute the value. Thus, in the syntax description, this field, Data,

is a terminal symbol. If the type character implies an SLU, the numeric value is the

number of contained lexical units. This number also implies the storage needed for

the associated TAM node.

15

Table 2.2 gives an alternative, right recursive, description of the TSF syntax. Instead

of the ABNF zero occurrences syntax, an ε alternative explicitly indicates nontermi-

nals that may be empty.

Table 2.2: TSF Right Recursive Syntax

TSFMessage = LexList

LexList = LexUnit LexList

LexUnit = Number Name LUData

LUData = PLUType data1

LUData = SLUType LexList1

Number = digit Digits

Digits = ε / digit Digits

Name = ε / firstchar Nchars

Nchars = ε / namechar Nchars

Figure 2.1 represent graphically the syntax of Table Table 2.2. In the diagram, a

rectangle is a nonterminal symbol. A terminal symbol is a circle or elongated oval.

The figure shows that the TSF syntax obeys the following two rules.

Figure 2.1 shows that the TSF syntax obeys two rules.

Rule 1: For any nonterminal, the set of first symbols for each of its alternatives is

unique.

Rule 2: For any nullable nonterminal, such as LexUnit and Name which have the

empty string as an alternative, the set of its follow symbols is disjoint from the

set of its first symbols.

Together, these two rules guarantee that any sequence of TSF lexical units can

be unambiguously recognized by looking at the next terminal in the sequence (one

symbol lookahead). Table 2.3 shows the first and follow sets.

1zero length is indicated by the leading LexUnit Number, not the syntax

16

Figure 2.1: TSF Syntax Diagrams

Table 2.3: First and Follow Symbols for the TSF Syntax

Nonterminal Nullable First Symbols Follow Symbols

TSFMessage no digit

LexList no digit digit

LexUnit no digit digit

LUData no PLUType, SLUType digit

Number no digit firstchar, PLUType, SLUType

Digits yes digit firstchar, PLUType, SLUType

Name yes firstchar PLUType, SLUType

Nchars yes namechar PLUType, SLUType

Chapter 6 shows how TSF can encode XML. In this application of TSF, the type

characters are chosen to suggest XML meanings. The characters ’[’, ’]’, ’ !’, ’+’, and

17

’?’ are all PLUType characters. The characters ’<’ and ’=’ are SLUType characters.

TSF does not define specific type characters for PLUType and SLUType. These are

user defined. The characters available for type characters are implied by the simple

syntax. A type character cannot be a digit, and cannot be a character that may

appear in a name. This is because lexically, the type character signifies the end of a

number or a name. When names are defined as XML tag names or Javascript variable

names, then all the remaining ASCII characters between 32 (0x20) and 127 (0x7f)

are available for types. Specifically, these are the characters 32 to 47 (0x20-0x2f),

58 to 64 (0x3a-040), 91 to 96 (05b-0x60), and 123 to 126 (0x7b-0x7e). Although

there is no lexical reason why 0 to 31 (0x00-0x1f) and 127 (0x7f) cannot be used, we

avoid them to keep the TSF serializations text-editable. The characters in use by an

application are initially set through API initialization.

In Chapter 3, since JSON already has a string representation for each of its primitive

types, all primitive types are typed by a single ’string’ type using the single quote

character (’). The character ’[’ is the JSON array type, and ’’ is the JSON object

type. The TSF serialization of JSON therefore requires three type characters. A

different application could use more type characters to signify individual encodings

of JSON primitive types.

Chapter 6 shows how TSF can serialize XML. In this TSF application, the type

characters suggest XML meanings. The characters ’[’, ’]’, ’ !’, ’+’, and ’?’ are all

PLUType characters. The characters ’<’ and ’=’ are SLUType characters.

TSF Message Generation

In order to show that the TSF syntax of Table 2.2 is an accurate description of

the TSF format, we show that the syntax generates TSF strings, with the following

informal argument.

18

In order to analyze generated strings, one starts with the goal symbol and expands

it by replacing it with each of its alternative definitions. These are the strings that it

generates. The resulting strings are each expanded by replacing nonterminal symbols

with their definitions. This process continues until a string contains only terminal

symbols. A string of terminals derived this way is said to be generated by the syntax.

Beginning with a set consisting only of the goal symbol, TSFMessage, a new set is

created containing all the strings generated by expanding TSFMessage. At each sub-

sequent step, a new set of strings is generated from the previous set by replacement

of the leftmost nonterminal of each string by each definition of the non-terminal.

The intent of the process is to show when a generated string contains only terminals,

it is a correct TSF message.

• TSFMessage generates one or more LexUnit ’s.

• LexUnit generates a Number followed by a Name, followed by LUData. Name

is optional since it may generate the empty string.

• LUData is either a primitive LU, if it starts with a PLUType (a terminal)

character, or a structured LU if it starts with a SLUType (a terminal) character.

A primitive LU is followed by Data, which may be data (a terminal), or empty.

A structured LU is followed by zero or more LexUnit ’s.

• A Name is a sequence of terminals.

• A Number is a sequence of terminals.

The informal analysis shows that a TSFMessage is a sequence of LexUnit ’s, which in

turn generate the terminal sequences of either primitive or structured lexical units.

Therefore, the syntax generates only correct TSFMessages ’s.

19

Chapter 3

TSF JSON Equivalence

TSF’s design is easily applied to JSON, the Javascript Object Notation. JSON is a

character-based serial encoding of general computing data structures that requires

parsing for deserialization. The web site ”Introducing JSON” [18] describes JSON

as

”... built on two structures:

A collection of name/value pairs. In various languages, this is real-

ized as an object, record, struct, dictionary, hash table, keyed list,

or associative array.

An ordered list of values. In most languages, this is realized as an

array, vector, list, or sequence.”

A JSON collection is equivalent to a TSF SLU containing a sequence of named PLU’s

and SLU’s. A JSON array is a TSF SLU containing a sequence of unnamed PLU’s

and SLU’s. TSF’s internal data model, TAM, handles the JSON data structures.

Several export convention allow TSF messages to be exported as either XML strings

or JSON strings. We should note that the primary purpose of TSF is to transmit

and receive messages with efficient serialization and deserialization. This description

of the application of TSF to JSON underscores the generality of the TSF design.

20

3.1 The Application of TSF to JSON

In order to apply TSF to JSON, we need:

1. a PLU type for each of the JSON primitive types

2. a structured lexical unit type to identify arrays

3. a convention for handling JSON names which contain type characters, or that

begin with digits.

In all cases, we will use TSF type characters that suggest the JSON delimiters.

3.1.1 Primitive Types

Javascript’s primitive types include integers, floating points, strings, booleans, and a

null type. However, JSON does not encode these types differently, but instead uses

their string representations. With PLU types, it would be possible to encode each

JSON primitive type differently in a TSF transaction. However, for the pedagogical

purposes of this section, we keep the string encoding and indicate all primitive types

with the single quote type character (’).

3.1.2 Collections

A collection is the first of two JSON data structures, and is a sequence of named

primitive and structured elements. This is exactly what a TSF SLU is, and we will

use the left brace ({) as the SLU type character for a JSON collection.

21

3.1.3 Arrays

Arrays are second of the two data structures encoded by JSON. A separate SLU type

character is needed for arrays, and we will use the left bracket ([) for arrays. The

SLU count will be the number of elements in the array. As with all SLU’s, an array

can have a name, or it can be unnamed.

3.1.4 JSON Names Containing TSF Type Characters

TSF expects lexical unit names, if they are present, to exclude the characters that

are used as type characters, (’, {, [), so that the detection of a name can be

accomplished by a short scan forward until a type character is encountered. In

JSON, collection property names may contain any character. JSON handles this

by delimiting all names using double-quotes. Double-quotes in a name are handled

by escaping (preceding) a double-quote with a backslash (\) character. Since the

possibility of names containing the three LU type characters is remote, it is not

necessary to incur the overhead of processing every name as if it possibly contained a

type character. The double-quote character (") used by JSON is a good introduction

character to signify that special processing should be done with a name. In a TSF

serialization, a name that starts with a double-quote (") will be processed as if it

contained backslash (\) escape sequences. Any character following a \ is accepted

as a name character without further examination. An unescaped type character will

terminate the scan normally. As an example, the four character name {\[’ will

appear in a TSF serialization as "\{\\\[\’. If ’"’ appears as a name character, it

should be escaped.

There is one other subtlety regarding this convention. A non-digit character always

terminates TSF length and count fields. In JSON, it is possible for a name to

begin with a digit character, so the ’"’ name convention must also be used in this

22

situation. Digits in a name are not escaped, but a name such as 64th must begin

with the double-quote, as "64th. This convention allows a name to be created from

any sequence of characters, while keeping the name processing simple in most cases.

3.2 String Export

TSF strings can be exported as either XML or JSON strings, by adopting certain

conventions. This is more of an academic exercise than a practical one, but may

be useful when a TSF message is exported from the realm of IoT to a different

computing environment.

3.2.1 Exporting TSF as JSON Strings

Serializing a JSON string in TSF is in a sense a lossy transformation. Unlike XML,

JSON ignores whitespace on deserialization, so parsing JSON loses whitespace for-

matting. This is the only possible difference between an input JSON string converted

to a TSF representation and the output string converted from that representation

back to JSON. If a JSON string has no ignorable whitespace, the conversion to TSF

and back to JSON is lossless. However, TSF includes the possibility of preserving

whitespace using unnamed text lexical units if the JSON-to-TSF converter recognizes

and preserves whitespace.

3.2.2 Exporting TSF Serializations of JSON as XML Strings

Without JSON extensions, TSF representations can always be rendered as XML

strings. With several conventions, it is possible to maintain this feature when TSF

has been extended to JSON.

23

Unnamed Structured Lexical Units An XML representation requires a name,

so in those cases, other than arrays, where the JSON object is unnamed, a

name can be generated from the position, nesting level and sequence, of the

element.

Arrays Array elements under the same parent have the same name, generated from

the position of the parent. Optionally, the names can be made unique by

including the sequence number of the array element.

Arbitrary Property Names Any name that does not obey the name rules for

XML element names will have any invalid character converted to a five char-

acter sequence equivalent to the six character JSON UCS escape convention

(\uhhhh), but with the leading \ dropped. With this convention, a name will

be guaranteed to start with a letter, and contain only letters and digits.

24

Chapter 4

Transaction Array Model

The Transaction Array Model is the in-memory structure of a deserialized TSF trans-

action. TAM is a simple, conceptually straightforward, representation of a TSF

transaction. It features

1. only one memory allocation needed to create the structure to store all the

elements of an SLU

2. an array structure to minimize the data fields devoted to structure overhead

3. the direct use of the in-memory TSF transaction for value storage, also called

zero-copying

TAM combines the lexical units that are the immediate content of an SLU into a

single dynamically allocated node. This node has the structure of a small table. See

Figure 4.1.

25

Row1 Type2 Name3 Value4

1 if SLU data reference or null TAM node reference or null

2 if PLU data reference or null data reference

. . . PLU or SLU

n
1 row numbers are not part of the structure

2 an 8-bit type character

3 null if no name, otherwise a direct reference to the TSF transaction memory

4 SLU: null if empty, or a TAM node reference

4 PLU: a direct reference to the TSF transaction memory

Additional Fields in the Node

a reference to the TSF transaction in memory

a parent reference

a count of the number of rows in this node

a count of the number of rows used in this node

Figure 4.1: A Transaction Array Model Node (TAMNode)

4.1 TAM Creation

TAM attempts to reduce the dynamic allocations needed to create the structure by

taking advantage of the SLU occurrence counts embedded in a TSF string. Each

SLU has an occurrence count for the number of directly contained LU’s. TSF de-

serialization extracts these occurrence counts from the TSF string at the start of

SLU processing. Each SLU count is the number of table rows needed for the SLU’s

TAMNode. The full size of a TAMNode is thus computable as soon as the num-

ber of rows is known. The implications of this are different for each implementing

language. For example, in C, all of the storage needed for a TAMNode is allocated

26

with only a single dynamic memory request. In Java, where arrays must be allocated

separately, more allocations are needed, but still, when compared to the number of

allocations needed for an XML DOM representation, there is a significant reduction.

This reduction in dynamic allocations in TAM translates to reduced memory and

processing overhead.

The pseudo-structure of a TAMNode in C is shown in Listing 4.1 in which each of

the attributes of the table is given a separate array.

Listing 4.1 shows the pseudo-structure of a TAMNode in C, with each of the at-

tributes of the table declared in a separate array.

1 struct TAMNode

2 {

3 char *tsfXact;

4 struct TAMNode *parent;

5 unsigned elemUsed;

6 unsigned elemCount;

7 char elemType[elemCount]

8 char *elemName[elemCount];

9 void *elemValue[elemCount];

10 };

Listing 4.1: A TAMNode

It is a pseudo-structure because in C, arrays, such as elemName, cannot be declared

with a computable size. However, since the total number of lexical units is known be-

fore the structure is allocated, the actual amount of storage needed can be computed.

The declaration in Listing 4.1 is informative. The actual structure uses double point-

ers to locate each of the variable length sections in the TAMNode so that they can

be referenced within C code as simple arrays, even though they cannot be declared

exactly as shown in the listing.

27

4.2 Value Storage

TAM also uses a compact approach to store names and data. A TSF transaction is

read as a single string, contiguous in memory, and passed to a deserialize() method.

Values and names are identified by their offset from the start of the string and their

length. Note that a TAMNode references the start of the TSF string to anchor

offsets. In this way, no extra storage or allocations are required. This is a language-

neutral approach, and works for all languages such as Java, that do not use string

terminators. It also supports binary data fields, because it needs no embedded

terminators. However, terminators are also possible. For a language such as C,

if the transaction consists only of character data, the TSF metadata fields can be

overwritten, which allows each name and value to be 0-terminated. This is done on

the fly as the TSF message is being processed. Names and values are then directly

referenced as 0-terminated C strings. In either case, whether offsets and lengths or

0-terminated strings, names, and data values are all located in the original serialized

TSF transaction and no additional allocations are required to store them. This is

also true for generalized names (described in Chapter 3.1.4) after escape sequence

removal.

4.3 The TAM Root Node

The individual nodes of a TAM structure are linked through SLU references and

parent references. The TAM structure begins with a root node. The simplest TAM

structure is a sequence of PLU’s in a single node. If the PLU’s are at the root level,

they are effectively ”contained” by the pointer to the root node.

A TSF transaction always begins with an SLU to provide the count for the root node.

The transaction shown in Figure 4.2 begins with an SLU named root. It has three

28

contained units, two PLU’s (+, !) and an SLU (<) named doc with no value. The

embedded CR is shown using the C escape convention ’\n’, and should be counted

as a single character. Figure 4.3 shows the TAMNode for this transaction.

3root=9+ comment 31!doc [<!ELEMENT doc (#PCDATA)>\n]0doc<

Figure 4.2: TSF Transaction With Three Top Level PLU’s

Row Type Name Value

1 + null → ” comment ”

2 = null → ”doc [<!ELEMENT doc (#PCDATA)>\n]”

3 < → ”doc” null

→ tsfxact

null (a parent reference)

3 (number of rows in this node)

3 (number of rows used in this node)

Figure 4.3: The Root Node With Three LU’s

A close inspection of this node reveals that the name of the root SLU is missing.

The structure shown in Figure 4.4 is a TAMNode with a single named SLU field

and a value field that references the TAMNode containing the content of the SLU.

It could be considered the root node for the Figure 4.2 transaction.

In order to avoid the need for an extra node just to store the name of the root SLU,

TAM adopts a convention for the root node. The root node always represents the

contained LU’s of the top level SLU. If the top level SLU is named, the name is

located using the tfsxact field that is in every TAMNode. This field points to the

start of the transaction, and the top level SLU name, if it exists, is a few bytes beyond

this pointer. This convention avoids the need for an additional memory allocation

29

and overhead just to store the name of the root SLU. The root node is effectively

indicated by a null parent pointer, so it is clear when the API code needs to use

alternate logic to find an SLU name.

Row Type Name Value

1 = → ”root” → TAMNode

→ tsfxact

null (a parent reference)

1 (number of rows in this node)

1 (number of rows used in this node)

Figure 4.4: A TAMNode With a Single Named SLU

30

Chapter 5

Deserialization - Proof of Program Correctness

This section uses the techniques of Program Logic, also called Hoare Logic, to assert

the correctness of the deserialization program. First, the inference rules of Program

Logic used by the proofs are defined. Then, proofs for each of the methods are

presented culminating in a proof for the deserialize() method. The techniques

used here owe a debt to the presentation of program proofs in Bernstein and Lewis

[31].

5.1 Inference Rules

To prove a code fragment, Program Logic makes use of logical assertions and inference

rules about individual executable statements. The general form is to establish the

truth of a precondition P prior to statement execution. Then, using an inference

rule specific to the statement to be executed, a postcondition Q can be inferred.

Q, or an implication derived from Q, then becomes the precondition to the next

executable statement, and the process is repeated. This method allows one to assert

a precondition at the beginning of a code sequence, and infer a postcondition at the

end of the sequence. If this is done with respect to the intended effect of the code,

31

the postcondition proves the code does what was intended. If the conditions are not

constructed regarding the effect of the program, they may still constitute a valid

proof, but will not reflect insights about the execution of the program.

Program proofs use invariants. A program invariant is a condition that is true at

the beginning of the code sequence and remains true throughout its execution. A

loop invariant is a condition that is true at the beginning and end of each iteration

of a loop, although not necessarily during execution of the loop body.

5.1.1 Assignment

The rule for assignment states that if the condition P , with any occurrence of the

variable x in the condition substituted by the expression e, is true before the as-

signment of e to x, then the condition P is true after the assignment. There are no

hypotheses required above the line.

{Px/e} x = e {P}

The simple increment statement x = x + 1; illustrates the use of this rule. If the

statement precondition is 5 = x, by implication and the rules of arithmetic, we

can infer that 6 = x + 1 as x + 1 may be replaced by 6 wherever it occurs. The

postcondition then is 6 = x. As a line in a program proof,

{(5 = x)⇒ (6 = x+ 1)} x = x + 1; {6 = x}.

5.1.2 If Statement

The rule for an if statement states that if the condition P and the condition C are

true before the if body S, and the condition Q is true after S, then P is true before

32

the if statement and Q is true following it.

{P ∧ C} S {Q}
{P} if (C) S {Q}

This may be generalized to the if-else statement as follows.

{P ∧ C} S1 {Q}, {P ∧ ¬C} S2 {Q}
{P} if (C) S1 else S2 {Q}

A multi-branch if statement, which is basically the same as a switch statement, can

be handled as follows.

{P ∧ C1} S1 {Q}, {P ∧ C2} S2 {Q}, . . . , {P ∧ ¬(C1 ∨ C2 ∨ · · · ∨ Cn)} Sn+1 {Q}
{P} if (C1) S1 else if (C2) S2 else if . . . else Sn+1 {Q}

5.1.3 While Loop

The rule for a while loop states that if a loop invariant I and the loop condition C

are true before each iteration of the loop body S and I is true after each execution

of S, then the loop invariant may be asserted before the beginning of the loop and

at the end of the loop, along with falsity of the loop condition.

{I ∧ C} S {I}
{I} while (C) S {I ∧ ¬C}

This rule says nothing about termination other than when the loop terminates, the

condition C will no longer be true. Loop termination requires a separate argu-

ment. The while loop condition must be altered within the loop body so that it

will ultimately be false. Most commonly, an integer within C receives monotonically

increasing or decreasing values which must eventually cause C to change.

33

5.1.4 Restricted Procedure (Method) call

A procedure or method call is somewhat like an assignment statement. The result is a

function of the input parameters. The parameters are restricted to value parameters,

and the procedure returns a single value. This leads to an inference rule that looks

much like assignment.

{P x/f(p, q, . . .)} x = f(p, q, . . .) {P}

An equivalent view of a procedure call is to consider that it has i input parameters

and j output parameters in its parameter list. Instead of a return statement, an

assignment to an output parameter returns a value to the caller. The output param-

eters are like the left-hand expressions of one or more assignment statements, and are

functions of the statements S of the procedure. Logically describing the input and

output parameters as vectors, the procedure call f becomes f(in, out). An inference

rule for the procedure call is then

{P out/f(in, out)} f(in, out) {P}

5.1.5 Return

A return statement must be inside a method f , and is effectively an assignment of a

value to an output parameter which is the result of the method f . The postcondition

of the return becomes a postcondition of the invocation of f , with f substituted

for occurrences of x in Q. Q may not reference local variables other than the one

mentioned in the return statement, and parameters that are not final.

{Q} return x {Q x/f(. . .)}

34

5.2 Proof Example

As an example of the proof technique to be used with selected TSF functions, a

proof tableau is given for the C function shown in Listing 5.1 which returns 2n when

passed n. The parameter n must be greater than 0, so n > 0 is a method invariant.

The tableau is shown in Table 5.2. Each line in the tableau has three columns.

1. Proof Line Number - used to identify individual lines in the proof

2. Formula - an assertion about a program statement, which takes the form of

{precondition} statement {postcondition}; the precondition is true before the

statement is executed, and the rules of inference for the particular statement

imply the postcondition

3. Justification - additional notes about the assertions of the proof line

1 int iexp(int n) {

2 int j, x;

3 j = 0;

4 x = 1;

5 while (j < n) {

6 j = j + 1;

7 x = x * 2;

8 }

9 return x;

10 }

Listing 5.1: Method iexp() to Compute 2 to the nth Power

35

Precondition Statement Postcondition Justification

1 {n > 0} program invariant

2 {0 = 0} j = 0; {j = 0} assign, pgm 3

3 {1 = 1 ∧ j = 0} x = 1;

{x = 1 ∧ j = 0⇒ x = 2j} assign, pgm 4

4 {(x = 2j)⇒ (x = 2−12j+1), j < n⇒ j + 1 ≤ n} line 1, 3

{x = 2j} loop invariant

5 {x = 2−12j+1} j = j + 1;

{j ≤ n ∧ (x = 2j−1 ⇒ 2x = 2j)} assign, pgm 6

6 {2x = 2j} x = x * 2; {j ≤ n ∧ x = 2j} assign, pgm 7

7 {x = 2j ∧ j < n}
while (j < n) S

{x = 2j ∧ ¬(j < n)} while, pgm 5-8

8 termination: j monotonically increases

9 {x = 2j ∧ j ≥ n} return x; iexp = 2n return, pgm 9

10 {iexp(n) = 2n} result

Table 5.1: Proof of method iexp()

5.3 Proof of Deserialization Helper Methods

In the following, actual program listings are modified to accommodate proof inference

rules, which are designed for simple statements. For example, the loop condition in

Listing 5.2 is rendered in a simplified form in Listing 5.3 with compound statements

and conditions reduced to simpler forms for proof.

1 while (idx < ln && isdigit(ch = str[idx])) { . . .

2 }

Listing 5.2: Complex while Loop

36

1 while (idx < ln) {

2 ch = str[idx];

3 if (! isDigit(ch))

4 break;

5 . . .

6 }

Listing 5.3: A Complex while Loop Rendered for Proof

5.3.1 Proof of numericValue()

The numericValue() method, shown in Listing 5.4 converts a numeric character to

its corresponding integer value. A non-numeric character receives the value 0. It is

effectively a table lookup performed with an if/else statement. The proof tableau is

shown in Table 5.2.

1 int numericValue(char ch) {

2 int x;

3 if (ch == ’1’)

4 x = 1;

5 else if (ch == ’2’)

6 x = 2;

7 else if (ch == ’3’)

8 x = 3;

9 else if (ch == ’4’)

10 x = 4;

11 else if (ch == ’5’)

12 x = 5;

13 else if (ch == ’6’)

14 x = 6;

15 else if (ch == ’7’)

16 x = 7;

17 else if (ch == ’8’)

18 x = 8;

19 else if (ch == ’9’)

20 x = 9;

21 else

22 x = 0;

37

23 return x;

24 }

Listing 5.4: Method numericValue()

Precondition Statement Postcondition Justification

1 P : (1 = 1 ∧ 2 = 2 ∧ · · · ∧ 9 = 9 ∧ 0 = 0) definition
2 Q : (x = 1 ∨ x = 2 ∨ · · · ∨ x = 9 ∨ x = 0) definition
3 {1 = 1} x = 1; {x = 1} pgm 4
4 {2 = 2} x = 2; {x = 2} pgm 6
5 {P} x = i;

{Q}, 0 ≤ i ≤ 9 pgm 4-22
6 {P} if (ch==’1’) x = 1;. . . {Q} line 4, if/else
7 Q : (0 ≤ x ≤ 9) simplifying
8 {Q} return x; return inference

{0 ≤ numericV alue(ch) ≤ 9} return inference

Table 5.2: Proof of numericValue()

Precondition Satetement Postcondition Justification

1 C : {′0′,′ 1′, . . . ,′ 8′,′ 9′} a set of digit characters
2 Q : (x = 1 ∨ x = 2 ∨ · · · ∨ x = 9 ∨ x = 0) definition
3 {i = i ∧ ch = Ci}

x = i; i’th if, pgm 3-20
{x = i, (0 ≤ i ≤ 9)}

4 {0 = 0 ∧ ¬(ch = Ci)}
x = 0; else, pgm 21-22

{x = 0, (0 ≤ i ≤ 9)}
5 {Q} return x; {NV (ch)} NV() defined above

Table 5.3: Proof(2) of method numericValue()

Although the proof for numericValue() indicates that a postcondition for the call is

an integer return value from 0 to 9, we wish a more specific functional result that

38

can be used in subsequent proofs.

NV (c) =



0 if c =′ 0′

1 if c =′ 1′

. . .

9 if c =′ 9′

0 otherwise

A revised proof tableau using the function NV (c) is shown in Table 5.3.

5.3.2 Proof of fieldLength()

The fieldLength() method shown in Listing 5.5 scans the input string for a se-

quence of digit characters and returns the integer value corresponding to the digit

character sequence. It uses the numericLength() method. The following code is not

strictly Java code in that it uses two output parameters. The corresponding Java

code uses a two element array to return two values. However, the inference rules for

method calls are designed for multiple individual output parameters.

1 void fieldLength(String str , int len , int i, int [2] rtn) {

2 int a, d;

3 Char ch;

4 // String T = "";

5 a = 0;

6 while (i < len) {

7 ch = str[i];

8 if (! iswdigit(ch))

9 break;

10 d = numericValue(ch);

11 a = a * 10 + d;

12 // T = T + ch;

13 i = i + 1;

14 }

15 rtn [0] = a;

16 rtn [1] = i;

17 }

39

Listing 5.5: Method fieldLength()

The proof of the method fieldLength() uses a non-program variable T which repre-

sents the sequence of digit characters selected from the string parameter, and reflects

the implicit multiplication by 10 and addition that appending an additional digit to

the right of a number representation accomplishes. It is referenced in comments in

the program since there is no need for the program to actually compute its value.

Using T , we define a function IV (T), the integer value of a string of digit characters

(di), as

IV (T) =

{
0 if T = ””

d1d2 . . . dn if T = ”d1d2 . . . dn”

We also define the predicate NC(i) to be true if i is the index of the next character in

the string, and false otherwise. NC(i) is true on entry to fieldLength(). Once the

character i is accepted from the string, then NC(i) is false, but NC(i+1) is true. The

function NV () is the value of the numericValue() method defined above. With

these definitions, the proof of the method fieldLength() can be shown in Table 5.4.

40

Precondition Statement Postcondition Justification

1 C : {′0′,′ 1′, . . . ,′ 8′,′ 9′} set of digit chars

2 0 ≤ i < |str| ∧NC(i) ∧ len = |str| entry conditions

3 {”” = ””} T = ””; {T = ””} pgm 4

4 {0 = 0} a = 0; {a = 0} pgm 5

5 I : a = IV (T) ∧NC(i) loop invariant, 2-4

6 {NC(i)} ch = str[i]; pgm 7

{ch = stri ∧NC(i+ 1)}
7 {ch = stri ∧NC(i+ 1)}

if (!iswdigit(ch) break; line 1, pgm 8,9

{ch = di ∈ C ∧NC(i+ 1)}
8 {ch = di ∈ C}

d = numericValue(ch); pgm 10

{d = NV (di)}
9 {10a+ d = IV (Tdi)}

a = a * 10 + d; pgm 11

{a = IV (Tdi)}
10 {a = IV (Tdi)}

T = T.append(ch); {a = IV (T)} append, pgm 12

11 {NC(i+ 1)} i = i + 1; {NC(i)} pgm 13

12 I : a = IV (T) ∧NC(i) invariant, 10,11

13 termination

{i ≥ |str| ∨ ch /∈ C}
14 {a = IV (T)} rtn[0] = a; {rtn0 = IV (T)} pgm 15, line 10

15 {NC(i)} rtn[1] = i; pgm 16, line 11

{rtn1 = i ∧NC(i)}

Table 5.4: Proof of method fieldLength()

Notes on the proof of fieldLength().

41

1. C is a set of digit characters.

2. On entry, the index i is greater than or equal to 0 and less than the length of

the parameter str; the variable len equals the number of characters in str.

3. The logical variable T begins as an empty string, program line 4.

4. An initialization assignment sets the variable a to 0, the integer value of T ,

program line 5.

5. The loop invariant I asserts the variable a is equal to the integer value of the

digit string T and the index i is the index of the next character to be processed

in the parameter str.

6. Since NC(i) is true, the assignment assigns to ch the i’th character of str.

7. Additional loop termination condition; if ch /∈ C, jump to the end of the loop,

program lines 8 and 9.

8. d is the numeric value of the character ch, program line 10.

9. The value of a is updated by appending the digit d, program line 11.

10. ch is appended to the logical variable T.

11. The loop index i is incremented by 1.

12. The loop invariant I can now be reasserted.

13. The loop must terminate because i ≥ |str| ∨ ch /∈ C.

14. The first return variable rtn0 is set to a, the numeric value of the length field.

15. The second return variable rtn1 is set to the loop index i, the index of the next

character to be processed.

5.4 Deserialization

The method deserialize(), shown in Listing 5.6, is a wrapper around the method

processElems() that deserializes what are effectively top level document elements.

The wrapper is needed because, unlike XML, the TSF root level element may be an

unnamed container with multiple SLU’s and PLU’s. deserialize() lexes the count

only, and calls processElems() to perform the root element deserialization.

42

In TSF format, if there are multiple top levels elements, the first numeric field is a

count of the other elements followed by an ’=’ delimiter. If the transaction consists

only of a single named SLU, the unnamed SLU is not present. See Section 4.3 for

further details. The function CT () represents the count of elements to be processed.

We continue to use the predicate NC(i) which is true when i is the index of the next

character in the input to be processed.

5.4.1 Proof of deserialize()

The proof of deserialize() is given in Table 5.5 following its listing, Listing 5.6.

1 NpxUCElement *

2 deserializeUC(Char *wbuf , int siz)

3 {

4 NpxUCElement *docElement;

5 int ndx , idx , rtn[2], len;

6 ndx = fieldLengthUC(wbuf , 0, rtn);

7 if (L’=’ != wbuf[ndx])

8 { /* not unnamed SLU - count of 1 is implied */

9 rtn[0] = 1;

10 idx = 0;

11 }

12 else

13 {

14 idx = ndx + 1;

15 }

16 docElement = newNpxUCElement(wbuf , rtn[0], 0);

17 idx = processElemsUC(docElement , wbuf , rtn[0], idx ,

18 (char)wbuf[ndx]);

19 return docElement;

20 }

Listing 5.6: Method deserialize()

43

Precondition Statement Postcondition Justification

1 {NC(0)}
{fieldLength(str, 0, rtn)); pgm 6

{NC(rtn0) ∧ rtn1 = CT ()}
2 {CT (rtn1)} n = rtn[1]; {n = CT ()} line 1

3 {1 = 1} rtn[0] = 1; assign

{(rtn0 = 1) = CT ()}
4 {true} i = 0; {NC(i)} assign

5 {rtn0 + 1 = CT ()} r0 = rtn[0] + 1; {(r0 = CT ()} pgm 7, assign

6 {NC(n+ 1)} i = 0; {NC(i)} assign

7 {true} if (...)... pgm 7-16, if

{NC(i) ∧ r0 = CT ()}
8 {r0 = CT ()}

doc = new Npx(r0, 0); alloc root

{}
9 {r0 = CT () ∧NC(i)}

processElems(doc,str,r0,i,r); processElems()

{NC(r)}
10 {} return doc; {} return doc root

Table 5.5: Proof of method deserialize()

The method processUCElems(), shown in Listing 5.7 returns a fully constructed

root element. deserialize() constructs a TAM document element which is returned

to the caller.

5.4.2 Proof of processUCElems()

processUCElements() is called from deserialize() and performs the full deserial-

ization of the input string the construction of all TAM nodes but the root node

44

allocated in deserialize().

1 static int

2 processElemsUC(NpxUCElement *npxElement , Char *str ,

3 const int ct , int ndx , char typ)

4 {

5 int idx , ix;

6 int rtn [2];

7 Char ch;

8 NpxUCElement *elm;

9 idx = ndx;

10 for (ix = 0; ix < ct; ++ix)

11 {

12 ndx = fieldLengthUC(str , idx , rtn);

13 str[idx] = L’\0’;

14 ch = str[ndx];

15 if (ch >= arraySize(ctype) || 0 == (ctype[ch] & ST))

16 {

17 if (* ENAME == (char)ch)

18 {

19 ndx = extendedNameUC(str , ndx + 1);

20 ch = str[ndx];

21 }

22 else

23 {

24 while ((ch = str[ndx]) >= arraySize(ctype) ||

25 0 == (ctype[ch] & ST))

26 {

27 ++ndx;

28 }

29 }

30 }

31 if (ch < arraySize(ctype) && 0 != (ctype[ch] & PL))

32 {

33 str[ndx] = L’\0’;

34 idx = rtn [0] + ndx + 1;

35 self(npxElement).add(npxElement , str , rtn[1],

36 ndx , idx , (char)ch);

37 continue;

38 }

39 if (0 < rtn [0])

40 elm = newNpxUCElement(str , rtn[0], npxElement);

41 else

42 elm = (NpxUCElement *)0;

43 idx = ndx;

45

44 idx = processElemsUC(elm , str , rtn[0], idx + 1, (char)ch);

45 self(npxElement). addElem(npxElement , &str[rtn[1]], elm ,

46 (char)ch);

47 str[ndx] = L’\0’;

48 }

49 return idx;

50 }

Listing 5.7: Method processElems()

Based on the foregoing formal proofs, it should be clear that an equivalent proof

can be constructed for processUCElems(). The principles reflected in the code

have been used in the previous programs, so in the interest of brevity, they will be

described informally in Table 5.6.

Lines Explanation

1-3 processUCElems() is passed the TAM node being built, the transaction

string in TSF format, a count of the lexical units to be found at this

level, a starting index for the next lexical unit within the transaction

string, and the type character for the current lexical unit

6 the method fieldLengthUC() and processAttrList() when called

will return multiple values in array of reference parameters; this is the

return array

10 loop for the number of lexical units at this level, the parameter ct

12 fieldLengthUC() processes the length/count field of the next lexical

unit and returns the field’s value, in rtn[0], and the index of the

character following the field, in rtn[1] and as the return vale

14 get the next character from the TSF transaction string

15 if the next character is not an SLU or PLU type character, execute

lines 17-29

17-29 if the next character is an extended name signifier, process the extended

name by calling extendedNameUC(), and set ch to the following type

character, we have a normal name, which is lex’ed to the type character,

and ch is again set

46

Lines Explanation

31 if ch is a PLU type character, execute lines 33-37

33-37 add the new PLU to the current TAMNode being built, and go to the

next iteration to process the next lexical unit

39-42 processing falls to here if the next lexical unit is an SLU; allocate a new

TAM node for the SLU if the count is greater than 0; if the count is 0,

the reference to the TAM node is null

44 call processElems() recursively to process all the lexical units at the

next level, passing the number of units and the starting index of the

first unit; the return value is the index of the next unit to be processed

at this level

45 add a reference to SLU node just built to the current TAM node

49 the index of the next lexical unit following the units just processed is

returned

Table 5.6: Informal Proof of Method processElems()

47

Chapter 6

XML Equivalence: An Application of TSF

This chapter demonstrates the ability of TSF to losslessly represent XML documents,

in order to show that TSF is a least as general as XML.

Applying TSF to XML begins with relevant definitions from the XML 1.0 Recom-

mendation [32], followed by a discussion of the lexical units needed by XML. Several

short sections on various XML issues such as DOCTYPE’s and name spaces follow.

When syntax descriptions are needed, they are written using the Augmented Backus

Naur Form described in the IETF’s RFC5234[30]..

6.1 Relevant XML Definitions

The XML 1.0 recommendation[32] provides the definitions shown in Figure 6.1 and

Figure 6.2. The numbers in square brackets are the identifiers of the definitions in

the XML recommendation.

48

6.1.1 XML Names

”A Name is a token beginning with a letter or one of a few punctuation characters,

and continuing with letters, digits, hyphens, underscores, colons, or full stops, to-

gether known as name characters.”[32]

[4] NameChar = Letter / Digit / ”.” / ”-” / ” ” / ”:” / CombiningChar

/ Extender

[5] Name = (Letter / ” ” / ”:”) *NameChar

Figure 6.1: The Syntax of an XML name

CombiningChar ’s and Extender ’s are classes of Unicode characters that are not rel-

evant to TSF. What is important for its design is that a Name (called an XMLname

below) cannot contain the characters ”<”, ”>”, or ”=”.

The type characters used in TSF to represent XML lexical units must be disjoint

from XML name characters.

6.1.2 Tag Names and Attribute Names

[40] STag = ”<” Name *(S Attribute) *S ”>”

[41] Attribute = Name ”=” AttValue

Figure 6.2: The Syntax of an XML Open Tag

XML open tags are XML names, and the tag can contain a list of attributes. The

XML definition of AttValue uses character exclusion which makes the ABNF defini-

tion awkward, so we describe attribute values in English. An AttValue can be any

49

sequence of characters delimited by leading and trailing single quotes, or leading and

trailing double quotes. Characters with XML syntactic meaning cannot be coded

literally in an AttValue, but must be encoded using XML entity references. The

relevant entity references for attribute values are <, >, &, ', and

", for the characters ”<”, ”>”, ”&”, single quote (%x27), and double quote

(%x22) , respectively. The S in the definition represents XML white space. TSF

does not need entity references.

6.2 TSF Types for XML

TSF type characters identify the following XML types. The definitions all begin

with lower case characters because they are terminal elements in the TSF syntax

description of XML (Figure 6.4). As terminals, they do not need any auxiliary

processing, such as scanning.

xML-doctype-content - a DOCTYPE entity

xML-processing-instruction - a Processing Instruction

xML-comment - character data in an XML comment following the opening four

character <!-- sequence and ending at (not including) the three character -->

terminating sequence

xML-pcdata - parsed character data (XML PCDATA)

xML-cdata - character data (XML CDATA) (unexamined character data)

xML-attribute-content - the sequence of characters that make up the value of an

XML attribute; for TSF purposes, attribute content contains no XML entity

references.

xMLname - a sequence of characters conforming to the XML Name definition,

shown in Figure 6.1, used as either an element tag name or an attribute name.

50

6.2.1 The Syntax of XML Lexical Units

The TSF design is based on the idea of a lexical unit, named that because of the

minimal amount of lexical processing needed to recognize each unit in a TSF string.

A TSFXMLDoc string is a sequence of lexical units, shown in Figure 6.3.

TSFXMLDoc = 1*LexicalUnit

LexicalUnit = SLU / PLU

SLU = Element / Attrs

PLU = Doctype / ProcInst / Comment / Text / Cdata / Attr

Figure 6.3: The Syntax of an XML Document as a TSF String

Unstructured XML constructs are represented by Primitive Lexical Units, shown in

Figure 6.4 with their single character types. The length indicates the number of

value characters that follow the type character. The only named PLU is the Attr.

The xMLName conforms to the XML definition.

Note that Text and Attr use the same type characters, but there is no ambiguity

because they occur in different containers.

Number = 1*digit

Length = Number

Doctype = Length ”!” xML-doctype-content

ProcInst = Length ”?” xML-processing-instruction

Comment = Length ”+” xML-comment

Text = Length ”[” xML-pcdata

Cdata = Length ”]” xML-cdata

Attr = Length xMLname ”[” xML-attribute-content

Figure 6.4: TSFString Length Unit Syntax

51

XML elements (Element) and attribute lists (Attrs) are SLU’s, shown in Figure 6.5.

With SLU’s, the leading number is the count of contained lexical units. In the Ele-

ment SLU, contained units include processing instructions, comments, parsed char-

acter data (PCDATA), character data (CDATA), and subsidiary (child) elements.

The count is greater than or equal to zero. If the Element is empty, the count is

zero. The occurrence of Element in the definition of Content provides the recursive

definition for a nested XML data structure. With the Attrs SLU, the count is the

number of attributes in the attribute list. If there are no attributes, there is no Attrs

SLU, which is distinguished by its type code.

Count = Number

Element = Count xMLname ”<” 0*1Attrs Content

Attrs = Count ”=” 1*Attr

Content = *(ProcInst / Comment / Text / Cdata / Element)

Figure 6.5: TSFString Count Unit Syntax

6.2.2 DOCTYPEs, Processing Instructions, Comments

A complete serialized format for XML transactions must handle DOCTYPE’s, com-

ments, and processing instructions that are outside the root element, as well as a

single document root element. The complete TSFXMLMsg, Figure 6.6, has an op-

tional DOCTYPE followed by zero or more processing instructions and/or comments,

one XML (root) element (TSFXMLDoc), and zero or more processing instructions

and/or comments. The TSFXMLMsg is an unnamed SLU whose type character is

’=’. This overloading of the ’=’ character is not ambiguous since it is not contained

in an Element. Most often, a TSFXMLMsg will be just the XML root element, com-

posed of the lexical units of the TSFXMLDoc definition. In this case, the leading

”1=” sequence can be heuristically implied and omitted. For additional information

about the root node, see Chapter 4.3.

52

TSFXMLMsg = *1(Doctype) *(Procinst / Comment) TFSXMLDoc

*(ProcInst / Comment)

Figure 6.6: TSFString With Outside XML Elements

6.3 XML Issues

6.3.1 Namespaces

XML namespaces are not given any special treatment in the serialized format. An

XML tag name or attribute name may have a namespace prefix. The fully qualified

name, when it occurs, is embedded as an XML-name in the format. Namespace

URL’s are represented in the normal way as attributes.

6.3.2 Character and Entity References

XML markup gives certain characters special meaning. Among these are the angle

brackets (”less than” and ”greater than” characters), the ampersand, and the single

and double quotes. When these characters appear as normal data characters, they

must be treated specially so that they are not given their markup meaning. XML

provides for this need with character references and entity references, which are

special character sequences that encode these characters when they are used as data.

These have been mentioned above.

Because TSF is not parsed, it has no need for these sequences and TSF does not use

them. All data characters appear in a TSF string in their normal encoding. There

is no additional escaping of special characters needed.

53

6.3.3 Encoding

An XML document is normally introduced with the

<?xml version="1.0" encoding="..."?>

processing instruction specifying the XML version and the encoding of the following

document. Until very recently, there was only one XML version, 1.0. The new XML

1.1 version handles unusual situations that do not impact the core of XML usage.

While the ability to flexibly exchange documents encoded with different encodings

is useful, the UTF-8 encoding is a superset of US-ASCII and UCS4. The TSF/TAM

design addresses limited capability devices, often found in sensor networks, and makes

the assumption that encoding is not an issue. As such, the default behavior is

equivalent to

<?xml version="1.0" encoding="UTF-8"?>

so that this processing instruction need not be present in a TSF string.

The TSF design does not preclude the use of this processing instruction should an

application have need for it. It can be included as a lexical unit at the document

level. But, the code accompanying this dissertation conditionally compiles to either

USASCII, using 8-bit characters internally, or UTF-8 encoding, using 32-bit (UCS-4)

characters internally. The fixed length 8-bit USASCII provides better performance

and should be used unless there is a requirement for UTF-8. Eight-bit encoding is

also important in that it can support binary data in a TSF transaction.

54

6.3.4 XML Document Reconstruction

The design of TSF is intended to encompass all XML documents, and to support a

complete reconstruction of any TSF-encoded XML document. However, there are

certain limitations brought about by parsers and XML equivalences.

• When converting XML to TSF, the converter will serialize the attributes of an

XML element in the order they are provided by the parser in the XML library.

If this is not the order in which they appear in the document (maybe the parser

hashed them), when the document is reconstructed, the attributes will possibly

not be in their original order within the element start tag.

• An empty XML element will be serialized using the single tag abbreviation

<element/>. If the document originally contained <element></element>,

the reconstructed document will differ. This can be optionally controlled.

• An XML parser will not preserve whitespace between components such as pro-

cessing instructions and comments that appear outside of the root element. If

these were originally on separate lines, thus being separated by whitespace, the

reconstructed document will not have this whitespace.

• An XML parser will not preserve whitespace separating attributes within a

start tag. The reconstructed document will have only a single space character

separating attributes, with no spaces surrounding the ”=” between the at-

tribute name and the attribute value, and no spaces at the markup characters.

• Line end sequences can be optionally represented by a single newline character,

or a carriage return/line feed sequence.

55

6.4 The Overhead of TSF

Although the motivation for TSF is not compactness, a side effect of the format is a

smaller transaction when compared to its XML equivalent.

The Primitive Lexical Units each have one character indicating the type and a length

field whose width is dependent upon the number of data characters in the unit. If

l is the number of data characters, the width of the length field is dlog le, so the

overhead is 1 + dlog le.

Structured Lexical Units’s have the same kind of overhead. If c is the count of

contained lexical units, the width of the count field is dlog ce, so, with the SLU

type character, the overhead is 1 + dlog ce. An XML element with only PCDATA is

equivalent to an SLU/ PLU combination. Finally, if a document consists of content

in addition to the root element, a count of the number of document elements other

than the root element is also provided, with one additional delimiter character.

Table 6.1 summarizes the overhead of various lengths of an SLU/PLU combination

vs an XML element.

Data Characters

Lexical Unit Character Overhead 1-9 10-99 100-999

Unstructured 1 + dlog dataLengthe 2 3 4

Attribute list 2 + dlog attrCounte 3 4 5

Element 1 + dlog contentCounte 2 3 4

Document 1 + dlog docCounte 2

Table 6.1: TSF Overhead

For a simple XML element whose tag name is t characters, the overhead is 5 + t.

This reflects the 5 delimiter characters, 2 <, 2 >, and 1 /, plus an extra occurrence

56

of the tag name. TSF uses 1 delimiter for the tag name, but it also adds 1 delimiter

and a length field for the character content. TSF also has a count field for each

tag. The primary size difference between a TSF string and its equivalent XML is the

missing redundant end tag. The savings improves with the number of elements in

a transaction. Chapter 7, Table 7.2 shows test file size comparisons between XML

and TSF.

6.5 Examples

A few examples of XML serialization in TSF are shown in Figure 6.7 to illustrate

the foregoing descriptions.

Form Serialization*

XML <project/>

TSF 0project>

XML <ns:personnel xmlns:ns="urn:foo"><ns:person id="Boss"/><ns:person id="wo

rker"/></ns:personnel>

TSF 3ns:personnel<1=7xmlns:ns[urn:foo1ns:person<1=4id[Boss1ns:person<1=6id[w

orker>

XML <?peri rset?><!--Introduction--><project>content</project><!--Epilog--><

?peri sset?>

TSF 5=9?peri rset12+Introduction1project<7[content6+Epilog9?peri sset

* line wrapping is not part of the serialization

Figure 6.7: TSF Overhead

57

6.6 Embedding TSF in XML

A TSF string can be embedded in an XML Processing instruction in order to send a

TSF string within an existing XML infrastructure. A program using the XML SAX

API could then handle the TSF PI as a special case. Consider

<?tfx TSFString?>

As in all situations where control characters may be recognized as data, the ending

processing instruction two-character sequence ’?>’ cannot appear in the TSFString.

If it does, the processing instruction would be prematurely terminated. How likely

is this?

TSF uses the ’?’ to indicate a processing instruction, but XML precludes a ’>’ from

being the first character of a processing instruction target, so this conflict will never

arise.

TSF uses the ’>’ to delimit a tag name from a list of the tag’s attributes. A tag

name will never end in ’?’, so this conflict will never arise.

Therefore, the only potential conflicts would be in application data, where the ’?>’

sequence might appear in data in PCDATA, CDATA, or an attribute value. It would

be necessary to handle this within the application. A simple approach would be to

encode occurrences of ’?’ in the data as a sequence such as ’?-’. This would keep

the character adjacency ’?>’ from ever occurring in data, allowing the TSFString to

be embedded within an XML processing instruction.

58

Chapter 7

TSF/TAM Performance

This section compares the performance of standard XML deserialization processing

against TSF deserialization. The focus of the performance testing is on deserializa-

tion, as opposed to serialization, because, of the two operations, deserialization has

a formal API. XML parsing has two standard deserialization API’s, SAX and DOM.

XML serialization depends upon the internal data model. Some libraries will provide

serialization from DOM, but if one is using a SAX parser for performance, then one

is also building a custom data structure from the parse, which implies that a seri-

alizer must also be custom. The TAM library provides a serializer, which could be

compared to an XML DOM serializer, should one desire, but the following compares

only deserialization performance.

7.1 Test Files

The input test files are shown in Table 7.1, where they are given IDs for reference in

other tables. The ID’s are assigned in file size order. The size in bytes and a brief

description are included.

59

Table 7.1: Test File Descriptions

File ID File Name File Size Description

F1 future001.xml 70358 Scenario file from the Mana Game Series

F2 bpmnxpdl 40a.xsd.xml 160946 XSD file for XPDL 2.0

F3 eric.map.osm.xml 218015 OpenStreetMap export from northern WVa

F4 cshl.map.osm.xml 298233 OSM export of a research laboratory

F5 sccc.map.osm.xml 404977 OSM export of a community college

F6 British-Royals.xhtml 482666 British Royalty Lineage from Alfred the Great

F7 csh lirr osm.xml 712661 OSM export of a train station

F8 exoplanet-catalog.xml 2147926 NASA Kepler Exoplanet Catalog

F9 LARGEbasicXML.xml 3420388 Military Strategy Game Unit Order of Battle

Table 7.2 compares the sizes of the XML test files and their TSF equivalents.

Table 7.2: Test File Size Comparisons

ID XML Size TSF Size Reduction

F1 70358 54049 23.18%

F2 160946 142280 11.60%

F3 218015 206800 5.14%

F4 298233 284065 4.75%

F5 404977 386928 4.46%

F6 482666 477051 1.16%

F7 712661 677853 4.88%

F8 2147926 1456993 32.17%

F9 3420388 2797092 18.22%

Table 7.3 shows the XML characteristics of each file are shown. Files F3, F4, F5,

and F7 are similar and serve as a consistency check. Although differing slightly in

size, the table shows that they have the same internal structure. The other files were

selected because of their size and differing internal structures. Detailed explanations

of the columns follow Table 7.3.

60

Table 7.3: Test File Characteristics

Lex Avg Depth Children

ID Elems Attrs DATA Cmt Units Bytes Avg Max Avg Max

F1 1936 6 2596 0 4538 11.9 3.5 7 2.2 251

F2 2565 3317 4011 29 9922 14.5 3.7 11 2.4 379

F3 2515 11021 2815 0 16351 12.8 1.6 3 1.3 2017

F4 3544 15360 3616 0 22520 12.8 1.6 3 1.3 2709

F5* 5135 20566 5294 0 30995 12.6 1.7 3 1.3 3523

F6 4589 391 7948 5 12934 36.9 10.2 15 2.0 3556

F7* 8630 36855 8915 0 54400 12.6 1.6 3 1.3 6385

F8 168728 420 66247 0 235395 6.2 6.0 7 1.4 4215

F9 73156 15989 146227 1 235373 11.9 4.6 6 3.0 1129

* contains multibyte characters

Table 7.3 column explanations.

Elems the number of individual XML elements in the document

Attrs the total number of attributes on all the elements in the document

DATA the total number of CDATA and PCDATA occurrences in the document

Cmt the number of comments in the document

Lex Units the total number of lexical units in the document, which should equal

the sum of the previous four columns

Avg Bytes (per lexical unit) the number of bytes in the document divided by the

number of lexical units

Avg Depth the average depth of the subtree below an XML element

Max Depth the maximum depth of the document; the maximum n umber of ele-

ments encountered in the path from the root to the lowest leaf element

Avg Children the average number of child elements for any given element (Max

Children omitted from this calculation to avoid skewing the value)

61

Max Children the maximum number of children parented by any element; in these

documents, this is almost always the number of children of the root element

7.2 Performance of the C/C++ Implementation

Compared to Libexpat

Libexpat [33] is a library, written in C, for parsing XML documents. It is a popular

parser used in many industry-wide programs, including the open source Mozilla

project, Perl’s XML::Parser package, and Python’s xml.parsers.expat module. It

has undergone extensive development, testing, and release-to-release improvements.

The release used for the following work is libexpat-2.2.6. The C compiler used to build

TSF/TAM, libexpat, and the deserialization performance drivers on the MacBook

Pro is:

Apple LLVM version 10.0.0 (clang-1000.10.44.4)

Target: x86_64-apple-darwin18.2.0

Thread model: posix

Processor: 2 GHz Intel Core i7

The performance tests were run on the same machine.

The following points should be kept in mind when reading the information on com-

parative performance statistics between libexpat and TSF/TAM.

• libexpat is a SAX parser. When parsing an XML file using libexpat, minimal

callback functions are used.

62

• The libexpat callbacks build a stripped-down DOM in order to avoid bias. In

order to minimize memory allocation overhead, single allocations are used for

multiple strings. For example, to build an attribute element from name and

a value, a single memory request is made and the null-terminated name and

value are both copied into the allocation.

• Namespace processing in libexpat was disabled to correspond with the TSF

design. In this situation, libexpat treats a namespace prefix-qualified tag name

or attribute name as a single sequence of characters. xmlns-prefixed attribute

names are not given special treatment.

• CPU time is collected using the getrusage() C library function.

• All libexpat and TSF processing is done using in-memory input with no thread-

ing. Timing comparisons are not started until input is completely read.

Table 7.4 shows Libexpat CPU times to deserialize each of the nine test files. There

are five separate runs for each file, and the mean and standard deviations for the

runs are shown in the last two columns. Table 7.5 shows equivalent statistics for

TSF deserialization operating on each of the test files over five runs. Note that this

is an apples-to-apples comparison in that the TSF program is working with UTF-8

TSF files and supports a UCS-4 character set internally.

Table 7.6 shows the performance of an 8-bit character implementation of the TSF

algorithm, using the seven input files that do not have multi-byte character input.

As expected, the performance is better.

63

Table 7.4: Five Run Deserialization Performance Using a Libexpat C library (mi-

croseconds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev

F1 3051 2856 3213 3360 3126 3121.20 167.77

F2 7501 7046 7704 7786 7184 7444.20 287.69

F3 11413 11025 11053 11114 11287 11178.40 148.48

F4 15635 15704 15531 15117 16352 15667.80 398.15

F5 23402 22393 25996 21137 22454 23076.40 1627.62

F6 10001 10922 11212 11100 10938 10834.60 430.37

F7 42218 40058 44230 41468 39866 41568.00 1593.46

F8 114265 121418 125337 134613 128113 124749.20 6781.90

F9 158042 195949 180174 181541 185936 180328.40 12438.86

Table 7.5: Five Run Deserialization Performance Using a Wide Character C Imple-

mentation of the TSF Algorithm (microseconds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev

F1 662 585 579 551 550 585.40 40.85

F2 1678 1442 1398 1397 1402 1463.40 108.60

F3 2616 2053 2469 1887 1894 2183.80 302.43

F4 3134 2549 2836 2681 2592 2758.40 211.96

F5 4208 4166 3842 3663 4295 4034.80 240.97

F6 3367 2413 2670 3332 2482 2852.80 414.33

F7 7355 7097 6759 6549 6450 6842.00 339.00

F8 20513 20151 19287 21379 21208 20507.60 757.23

F9 35575 35133 29692 29965 37841 33641.20 3246.97

64

Table 7.6: Five Run Deserialization Performance Using an 8-bit C Implementation

of the TSF Algorithm (microseconds CPU time)

File Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stdev

F1 409 402 402 411 401 405.00 4.15

F2 1285 1050 1050 1050 1050 1097.00 94.00

F3 1372 1468 1339 1302 1335 1363.20 56.90

F4 2081 1809 1814 2042 1813 1911.80 122.86

F6 1203 1102 1084 1083 1133 1121.00 44.82

F8 19242 23759 22204 19090 16728 20204.60 2485.44

F9 21972 21580 21138 20849 21530 21413.80 386.72

Table 7.7: Deserialization Performance Improvement Factor, TSF vs Libexpat

File ID F1 F2 F3 F4 F5 F6 F7 F8 F9 Mean

TSF Improvement (UTF-8) 5.3 5.1 5.1 5.7 5.7 3.8 6.1 6.1 5.4 5.4

TSF Improvement (8-bit) 7.7 6.8 8.2 8.2 - 9.6 - 6.1 8.4 7.9

Table 7.7 summarizes the deserialization performance improvement provided by TSF

(UTF-8). The improvement factor is the mean Expat CPU time divided by the mean

TSF CPU time for each file. The overall mean improvement factor is 5.4, a reduction

of the CPU time of more than 80%.

As an additional indication of the consistency of the results, the CPU times for both

libexpat XML deserialization and TSF deserialization are highly correlated with the

number of lexical units in each file, given in Table 7.3. For TSF, the correlation is

0.956. For libexpat, the correlation is 0.975.

The reduction in deserialization time for TSF by a factor of 5.4 in comparison to

XML shows that TSF can be a significant energy reduction component of an IoT

device that sends and receives structured data.

65

As an added bonus, the headers and source code for TSF/TAM comprise less than

600 lines. The libexpat XML parse source code is approximately 15,400 lines.

66

Chapter 8

Conclusion

As the Internet of Things expands with limited capability devices, efficient transac-

tions formats can help move data faster, and with less energy. Less energy means a

longer field life for an IoT device that does not have an external power source. The

Transaction Serialization Format provides such a format. It is general enough to

support full XML document and JSON object serialization and deserialization for a

small fraction of the memory and CPU cost, as demonstrated by performance anal-

yses comparing a traditional XML library. The Transaction Array Model provides

a simple internal memory structure for handling the lexical units of a TSF message.

The TAM structures can be created and destroyed with fewer requests for dynamic

memory than needed for the well-known XML Document Object Model, and at the

same time are memory conservative. The code supporting this work is available from

https://github/dde/TSF. The full TSF/TAM library is presented in only five pages

of code in Appendix A.

67

Chapter 9

Future Work

Although the raison d’etre for TSF is serialization efficiency, TSF is also a serial

format. Information may be stored on any serial medium using TSF to preserve its

structure. This immediately raises the problem of updating information stored in

TSF, and related issues.

1. How is information located in a TSF data record? Since data is generally stored

in the clear in TSF, a design analogous to XPath might be possible.

2. How is information updated in a TSF record? Can the changes needed for

update, insert, and delete be localized without extensive modification to the

record?

3. Since TSF has a standard serialization/deserialization API, is the best way to

update a record simply to add to the API and modify the in-storage TAM?

4. Since TSF data is generally in character form, is it possible to create a simple,

TSF-aware editor to simplify direct update?

68

It is also possible to question some of the TSF design decisions. For example, TSF

uses counts and lengths are encoded using digit characters. Would there be a signif-

icant storage reduction if varying length bit fields were used to encode these values,

and would this improve processing efficiency?

There is code is the TSF repository for converting XML and JSON to TSF. This

code was written not as an end in itself, but to aid in the processing comparisons.

Would standard conversions make it easier for users to convert to TSF? This disser-

tation describes practical conventions for converting TSF to both XML and JSON.

Would these conversions support the use of TSF as an intermediate form to provide

conversion between XML and JSON. Does the use of TSF as an intermediate form

simplify other conversions?

69

Bibliography

[1] G. Pinto and F. Castor, “Energy Efficiency: A New Concern for Application

Software Developers,” Communications of the ACM, December 2017.

[2] Apache Group, “Apache Avro,” 2012. [Online]. Available:

https://avro.apache.org/docs/current/spec.html

[3] ——, “Apache Parquet,” 2013. [Online]. Available:

https://parquet.apache.org/documentation/latest/

[4] I. MongoDB, “Bson (binary json),” 2018. [Online]. Available:

http://bsonspec.org

[5] Java Language, “Java Object Serialization,” 1993. [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html

[6] G. van Rossum, “Python Pickle - PEP 3154,” 2011. [Online]. Available:

https://www.python.org/dev/peps/pep-3154/

[7] L. Wall, “PERL Modules DataDumper, FreezwThaw, Storable,” 1991. [Online].

Available: https://perldoc.perl.org/Storable.html

[8] The Object Management Group, “CORBA,” 2008. [Online]. Available:

https://www.omg.org/spec/CORBA/3.1/Interoperability/PDF

70

[9] The Java Language, “Java Remote Method Invocation,” 1993. [Online]. Avail-

able: https://docs.oracle.com/en/java/javase/13/docs/api/java.rmi/module-

summary.html

[10] H. Pennington et al., “The D-Bus Specification,” 2003. [Online]. Available:

https://dbus.freedesktop.org/doc/dbus-specification.html

[11] Apache Group, “Apache Thrift,” 2007. [Online]. Available:

http://thrift.apache.org/static/files/thrift-20070401.pdf

[12] D. Winer, “XML-RPC,” 1998. [Online]. Available: http://xmlrpc.scripting.com

[13] M. Gudgin et al., Eds., “SOAP Version 1.2,” 2007. [Online]. Available:

https://www.w3.org/TR/soap12/

[14] International Telecommunications Union, “Specification of Abstract Syntax

Notation One (ASN.1),” ITU Standard (Blue Book), 1988. [Online]. Available:

https://www.itu.int/rec/T-REC-X.208/en

[15] K. McCloghrie, D. Perkins, and J. Schoenwaelder, Eds., “RFC 2578 - Structure

of Management Information Version 2 (SMIv2),” 1999. [Online]. Available:

https://tools.ietf.org/html/rfc2578

[16] International Telecommunications Union, “X.509 - IT OSI - Public-key and

attribute certificate frameworks x.509 - it osi - public-key and attribute

certificate frameworks,” 2008. [Online]. Available: https://www.itu.int/rec/T-

REC-X.509

[17] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, Eds., “Extensi-

ble Markup Language (XML) 1.0,” February 1998. [Online]. Available:

https://www.w3.org/TR/1998/REC-xml-19980210

[18] D. Crockford, “Introducing json,” http://json.org/, 2005. [Online]. Available:

http://json.org/

71

[19] O. Ben-Kiki, C. Evans, and I. döt Net, “YAML Ain’t Markup Language -

Version 1.2,” 2001. [Online]. Available: https://yaml.org/spec/1.2/spec.html

[20] R. Rivest, “S-Expressions,” 1997. [Online]. Available:

http://people.csail.mit.edu/rivest/Sexp.txt

[21] M. Cokus and S. Pericas-Geertsen, Eds., “XML Binary Characterization

Properties, W3C Working Draft 05 October 2004,” 2004. [Online]. Available:

https://www.w3.org/TR/2004/WD-xbc-properties-20041005/

[22] J. Schneider et al., Eds., “Efficient XML Interchange (EXI) Format 1.0

- W3C Working Draft 16 July 2007,” July 2007. [Online]. Available:

https://www.w3.org/TR/2007/WD-exi-20070716/

[23] J. Clark and J. Cowan, Eds., “MicroXML,” October 2012. [Online]. Available:

https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxml.html

[24] C. Bormann and P. Hoffman, “Compact Binary Object Format,” 2013.

[Online]. Available: https://tools.ietf.org/html/rfc7049

[25] Google, “Protocol Buffers,” 2008. [Online]. Available:

https://developers.google.com/protocol-buffers/docs/proto

[26] W. van Oortmerssen, “Flatbuffers,” 2014. [Online]. Available:

https://github.com/google/flatbuffers

[27] M. Eisler, Ed., “RFC 4506 - XDR - External Data Repre-

sentation Standard,” 2006, obsoletes RFC 1832. [Online]. Available:

https://tools.ietf.org/html/rfc4506

[28] B. Cohen, “Bencoding - Part of BitTorrent,” 2008. [Online]. Available:

http://bittorrent.org/beps/bep 0003.html

[29] B. Ramos, “Binn - Binary Data Serilization,” 2015. [Online]. Available:

https://github.com/liteserver/binn/

72

[30] D. Crocker, Ed., “RFC 5234 - Augmented BNF for Syntax Specifications:

ABNF,” Internet Engineering Task Force Request for Comments, January

2008. [Online]. Available: http://www.ietf.org/rfc/rfc5234.txt

[31] A. J. Bernstein and P. M. Lewis, Concurrency in Programming and Database

Systems. Jones and Bartlett Publishers, Inc, 1993.

[32] T. Bray et al., Eds., “Extensible Markup Language (XML) 1.0 (Fourth Edition)

- W3C Recommendation 16 August 2006,” W3C Recommendation, August

2006. [Online]. Available: https://www.w3.org/TR/2006/REC-xml-20060816/

[33] The Expat Development Team, “LibExpat - Version 2.2.6,” 2018. [Online].

Available: https://libexpat.github.io

[34] P. V. Biron et al., Eds., “XML Schema Part 2: Datatypes Second

Edition, W3C Working Draft 28 October 2004,” 2004. [Online]. Available:

https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[35] ECMA International, “ECMA-404 The JSON Data Interchange Stan-

dard,” ECMA International, 2017. [Online]. Available: http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf

[36] D. C. Fallside and P. Walmsley, Eds., “XML Schema Part 0: Primer Second

Edition, W3C Working Draft 28 October 2004,” 2004. [Online]. Available:

https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

[37] D. Gruhl, D. Meredith, and J. Pieper, “A case study on alternate

representations of data structures in XML,” Proceedings of the 2005 ACM

symposium on Document engineering, November 2005. [Online]. Available:

http://delivery.acm.org/10.1145/1100000/1096652/p217-gruhl.pdf

[38] International Telecommunications Union, “ITU-T Recommendation X.693

- Information technology – ASN.1 encoding rules: XML Encod-

ing Rules (XER),” 2001. [Online]. Available: https://www.itu.int/ITU-

T/studygroups/com17/languages/X.693-0112.pdf

73

[39] J. Kangasharju and S. Tarkoma, “Benefits of Alternate XML Se-

rialization Formats in Scientific Computing ,” SOCP ’07: Pro-

ceedings of the 2007 workshop on Service-oriented computing perfor-

mance: aspects, issues, and approaches, June 2007. [Online]. Available:

http://delivery.acm.org/10.1145/1280000/1272461/p23-kangasharju.pdf

[40] A. L. Hors et al., Eds., “Document Object Model (DOM) Level 2 Core

Specification, Version 1.0, W3C Recommendation 13 November, 2000,”

November 2000. [Online]. Available: https://www.w3.org/TR/2000/REC-

DOM-Level-2-Core-20001113/

[41] D. P. Miranker and B. J. Lofaso, “The organization and performance of a treat-

based production system compiler,” IEEE Transactions on Knowledge and Data

Engineering, vol. 3, no. 1, pp. 3–10, 1991.

[42] OpenEXI Project, “A Quick Introduction to

OpenEXI,” web page, March 2012. [Online]. Available:

https://www.dropbox.com/s/n2545xm0jjyui2d/IntroToOpenEXI.pdf?dl=0

[43] M. Oshry et al., Eds., “Voice Extensible Markup Language (VoiceXML) 2.1 -

W3C Recommendation 19 June 2007,” 2007.

[44] D. Raggett, Raggett on HTML 4. Addison Wesley, 1998.

[45] A. Samaray and S. K. Makki, “A Comparison of Data Serialization

Formats For Optimal Efficiency on a Mobile Platform,” Proceedings of

the 6th International Conference on Ubiquitous Information Management

and Communication Article No. 48, February 2012. [Online]. Available:

http://delivery.acm.org/10.1145/2190000/2184810/a48-sumaray.pdf

[46] H. S. Thompson et al., Eds., “XML Schema Part 1: Structures Second

Edition, W3C Working Draft 28 October 2004,” 2004. [Online]. Available:

https://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

74

[47] XML Working Group, “XML Conformance Test Suites,” September 2013.

[Online]. Available: https://www.w3.org/XML/Test/

75

Appendix A

Listings

The C code that follows is written using idiomatic C which follows object-oriented

techniques, in effect object-oriented C. It is strict ANSI C and does not require a

C++ compiler. The author feels that OO techniques are easily adapted to C code

and provide the same advantages as do OO languages.

The UTF-8 (UCS-4 internal) versions of the code are presented. The primary dif-

ference is the use of the type wchar t, typedef’ed as Char, and its corresponding

functions, instead of the basic character type char. There are equivalent 8-bit ver-

sions for use with binary encoding.

The author uses three custom packages that contain low-level processing that is

common to many C programs.

Memory.h These functions are an interface to the C memory allocation functions.

They provide an out-of-memory error handling capability based on setjmp.h,

a debugging capability that tracks memory allocations to avoid memory leaks,

and a fence around allocation blocks that can detect some writes that exceed

the boundary of an allocated block of memory.

76

String.h These functions manage C-string assignments, concatenations, and sub-

strings, and the memory allocations that are needed by these operations. These

functions depend upon Memory.h.

StringBufffer.h These functions provide string creation that does not require prior

knowledge of the length of a string. String buffers are chunks of string data

that are linked together internally. The functions provide an interface that

hides the fact that the data is not stored contiguously. These functions depend

upon Memory.h.

A.1 NpxUCElement.h

Declaration of the method table for the NpxUCElement object. This is the only

”public” member of the NpxUCElement object.

#ifndef NpxUCElement_INCLUDE_GUARD

#define NpxUCElement_INCLUDE_GUARD

#ifdef NpxUCElement_EXPORT

#define NpxUCElement_API

#else

#define NpxUCElement_API extern

#endif

#define UCS_CHAR

#ifdef UCS_CHAR

typedef wchar_t Char;

#else

typedef char Char;

#endif

typedef char String;

typedef struct NpxUCElement NpxUCElement;

typedef struct NpxUCElementMtb

{

void (*add)(NpxUCElement *, Char *str , int nfm , int ndx , int idx , char typ);

void (* addElem)(NpxUCElement *, Char *nm, NpxUCElement *elm , char typ);

void (* forEachContent) (NpxUCElement *s, void *prm , void (*cb)(NpxUCElement *,

int , Char *nm , void *obj , char typ , void *prm));

int (*isSLU)(NpxUCElement *, Char *tp);

int (*isPLU)(NpxUCElement *, Char *tp);

Char *(* getObjName)(NpxUCElement *, void *obj);

void *(* getObjByName)(NpxUCElement *, Char *nm);

int (* hasContent)(NpxUCElement *);

int (* getElementCount)(NpxUCElement *s);

77

char (* getElementType)(NpxUCElement *s, int sub);

Char *(* getElementName)(NpxUCElement *s, int sub);

void *(* getElementValue)(NpxUCElement *s, int sub);

NpxUCElement *(* getParent)(NpxUCElement *s);

Char *(* getTransaction)(NpxUCElement *s);

} NpxUCElementMtb;

struct NpxUCElement

{

NpxUCElementMtb *mtb;

};

NpxUCElement_API NpxUCElement *newNpxUCElement(Char *str , int esiz , NpxUCElement

*par);

NpxUCElement_API void delNpxUCElement(NpxUCElement *);

#undef NpxUCElement_API

#endif

Listing A.1: NpxElement.h

A.2 NpxUCElement.c

The NpxElement.c file is the implementation of the NpxElement object, and contains

all the methods referenced in the method table. It also declares the NpxElementI

structure which is the ”private” implementation of the properties of the NpxElement

object. The code uses an interface (Memory.h) to the C library dynamic memory

management functions.

#include <wchar.h>

#include "Memory.h"

/**

* Import the API declarations .

*/

#define API_EXPORT

#include "NpxUCElement.h"

#undef API_EXPORT

#include "NpxRoot.h"

#define arraySize(a) ((sizeof a)/(sizeof a[0]))

typedef char String;

static void add(NpxUCElement *self , Char *str , int nfm , int fm, int to, char typ);

static void addElem(NpxUCElement *self , Char *nm , NpxUCElement *cntnt , char typ);

static void forEachContent(NpxUCElement *s, void *, void (* callback)(NpxUCElement

*, int , Char *name , void *obj , char typ , void *prm));

static int isSLU(NpxUCElement *s, Char *tp);

static int isPLU(NpxUCElement *s, Char *tp);

78

static Char *getObjName(NpxUCElement *s, void *obj);

static void *getObjByName(NpxUCElement *s, Char *nm);

static int hasContent(NpxUCElement *s);

static int getElementCount(NpxUCElement *s);

static char getElementType(NpxUCElement *s, int sub);

static Char *getElementName(NpxUCElement *s, int sub);

static void *getElementValue(NpxUCElement *s, int sub);

static NpxUCElement *getParent(NpxUCElement *s);

static Char *getTransaction(NpxUCElement *s);

/* method table */

static NpxUCElementMtb npxUCElementMtb = {add , addElem , forEachContent ,

isSLU , isPLU , getObjName , getObjByName ,

hasContent , getElementCount , getElementType , getElementName , getElementValue ,

getParent , getTransaction };

typedef struct NpxUCElementI

{

NpxUCElementMtb *mtb;

Char *xact;

NpxUCElement *parent;

Char ** elemNames;

void ** elemValues;

unsigned short elemCount;

unsigned short elemSize;

char elemTypes [8];

} NpxUCElementI;

/**

* Construct a new NpxUCElement object. The elemType array is sized in units of 8

chars. If the passed esiz is

* greater than 8, it requires additional storage allocated at the beginning of the

variable section of the

* object in units of 8 bytes. E.g. if esiz is 23, it requires 24 bytes or 2

additional units the size of elemTypes.

* ((23 - 1) / 8) * 8) = 16 additional bytes

*/

NpxUCElement *newNpxUCElement(Char *str , int esiz , NpxUCElement *par)

{

NpxUCElementI *self;

unsigned siz , szt;

int ix;

siz = sizeof(NpxUCElementI);

siz += esiz * (sizeof (*self ->elemNames) + sizeof (*self ->elemValues));

szt = sizeof(self ->elemTypes);

if (esiz > szt)

szt = ((esiz - 1) / szt) * szt;

else

szt = 0;

self = mAlloc(siz + szt , "newNpxUCElement");

self ->mtb = &npxUCElementMtb;

self ->parent = par;

self ->xact = str;

self ->elemSize = esiz;

self ->elemCount = 0;

self ->elemNames = (Char **)((char *)(self + 1) + szt);

for (ix = 0; ix < (int)(sizeof self ->elemTypes + szt); ++ix)

self ->elemTypes[ix] = ’\0’;

self ->elemValues = (void **)&self ->elemNames[esiz];

79

return (NpxUCElement *)self;

}

void delNpxUCElement(NpxUCElement *npxUCElement)

{

int ix, ct;

NpxUCElementI *self = (NpxUCElementI *) npxUCElement;

ct = self ->elemCount;

for (ix = 0; ix < ct; ++ix)

{

if (0 != (ctype[self ->elemTypes[ix]] & SL) && 0 != self ->elemValues[ix])

delNpxUCElement ((NpxUCElement *)self ->elemValues[ix]);

}

mFree((NpxUCElementI *) npxUCElement , "delNpxUCElementI");

}

static void forEachContent(NpxUCElement *s, void *prm , void

(* callback)(NpxUCElement *, int , Char *name , void *obj , char typ , void *prm))

{

int ix;

NpxUCElementI *self = (NpxUCElementI *)s;

for (ix = 0; ix < self ->elemCount; ++ix)

{

callback(s, ix, self ->elemNames[ix], self ->elemValues[ix],

self ->elemTypes[ix], prm);

}

}

static int isSLU(NpxUCElement *s, Char *tp)

{

Char typ = *tp;

if (typ < arraySize(ctype) && 0 != (typ & SL))

return 1;

return 0;

}

static int isPLU(NpxUCElement *s, Char *tp)

{

unsigned char typ = *tp;

if (typ < arraySize(ctype) && 0 != (typ & PL))

return 1;

return 0;

}

static Char *getObjName(NpxUCElement *s, void *obj)

{

int ix;

NpxUCElementI *self = (NpxUCElementI *)s;

for (ix = 0; ix <self ->elemCount; ++ix)

{

if (self ->elemValues[ix] == obj)

return self ->elemNames[ix];

}

return 0;

}

static void *getObjByName(NpxUCElement *s, Char *nm)

{

int ix;

NpxUCElementI *self = (NpxUCElementI *)s;

for (ix = 0; ix <self ->elemCount; ++ix)

{

if (0 == wcscmp(self ->elemNames[ix], nm))

return self ->elemValues[ix];

80

}

return 0;

}

static int getElementCount(NpxUCElement *s)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->elemCount;

}

static char getElementType(NpxUCElement *s, int sub)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->elemTypes[sub];

}

static Char *getElementName(NpxUCElement *s, int sub)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->elemNames[sub];

}

static void *getElementValue(NpxUCElement *s, int sub)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->elemValues[sub];

}

static NpxUCElement *getParent(NpxUCElement *s)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->parent;

}

static Char *getTransaction(NpxUCElement *s)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return self ->xact;

}

static int hasContent(NpxUCElement *s)

{

NpxUCElementI *self = (NpxUCElementI *)s;

return 0 != self ->elemCount;

}

static void add(NpxUCElement *s, Char *str , int nfm , int fm, int to , char typ)

{

int sub;

NpxUCElementI *self = (NpxUCElementI *)s;

sub = self ->elemCount ++;

self ->elemNames[sub] = (nfm == fm) ? (Char *)0 : (Char *)&str[nfm];

self ->elemValues[sub] = (void *)&str[fm + 1];

self ->elemTypes[sub] = typ;

}

static void addElem(NpxUCElement *s, Char *nm, NpxUCElement *cntnt , char typ)

{

int sub;

NpxUCElementI *self = (NpxUCElementI *)s;

sub = self ->elemCount ++;

self ->elemNames[sub] = nm;

self ->elemValues[sub] = (void *)cntnt;

self ->elemTypes[sub] = typ;

}

81

Listing A.2: NpxElement.c

A.3 Serialization/Deserialization Code

The serialization and deserialization conditionally compile either 8-bit or UCS-4

(wchar t) functions.

//

// main.c

// Test driver for Npx

//

// Created by Dan Evans on 8/31/17.

// Copyright 2017 Dan Evans. All rights reserved.

//

#include <dirent.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

#include <string.h>

#include <wchar.h>

#include <setjmp.h>

#include <time.h>

#include <sys/stat.h>

#include <sys/resource.h>

/* #define MEMORY_TRAK */

#include "Memory.h"

#include "Sstring.h"

#include "StringBuffer.h"

#include "UCStringBuffer.h"

#include "NpxElement.h"

#include "NpxUCElement.h"

#define self(s) (*s->mtb)

extern int npx2XML(NpxElement *elm , StringBuffer *sb , int nopts , ...);

extern int npx2XMLUC(NpxUCElement *elm , UCStringBuffer *sb, int nopts , ...);

/* extern NpxElement * deserialize (unsigned char *, int len); */

extern NpxUCElement *deserializeUC(unsigned char *, int len);

extern void *expatDeserialize(unsigned char *buf , int len);

extern char *serialize(NpxElement *);

extern void delDocumentTree(void *root);

extern clock_t getDOMTime ();

extern clock_t getTAMTime ();

typedef char String;

82

static char *version = "2.0";

static char *separator = "/";

static jmp_buf env;

static int opt_writexmlc = 0;

static int opt_reserialize = 0;

static int opt_repeat = 1;

static FILE *opt_dupfile = 0;

static int opt_expat = 0;

static char *opt_suffixes [10];

static UCStringBuffer *utf8toUCS(const unsigned char *str , int ln)

{

int ix;

unsigned char ch;

UCStringBuffer *wbuf;

wbuf = newUCStringBuffer ((UCStringBuffer *) 0, 0);

ix = 0;

while (ix < ln)

{

ch = str[ix];

if (ch < 0x80)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) ch;

ix += 1;

}

else if (ch >= 0xc0)

{

if (ch < 0xe0)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) ((ch & 0x1fu) << 6 |

(str[ix + 1] & 0x3fu));

ix += 2;

}

else if (ch < 0xf0)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) (((ch & 0x0fu) << 12) |

((str[ix + 1] & 0x3fu) << 6) |

(str[ix + 2] & 0x3f));

ix += 3;

}

else if (ch < 0xf8)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) (((ch & 0x07u) << 18) |

((str[ix + 1] & 0x3fu) << 12) |

((str[ix + 2] & 0x3fu) <<

6) | (str[ix + 3] &

0x3fu));

ix += 4;

}

else if (ch < 0xfc)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) (((ch & 0x03u) << 24) |

((str[ix + 1] & 0x3fu) << 18) |

((str[ix + 2] & 0x3fu) <<

12) | ((str[ix + 3] &

0x3fu) << 6) |

(str[ix + 4] & 0x3fu));

ix += 5;

83

}

else if (ch < 0xfe)

{

*ucstringBufferPostInc(wbuf) = (wchar_t) (((ch & 0x01u) << 30) |

((str[ix + 1] & 0x3fu) << 24) |

((str[ix + 2] & 0x3fu) <<

18) | ((str[ix + 3] &

0x3fu) << 12) |

((str[ix + 4] & 0x3fu) <<

6) | (str[ix + 4] &

0x3fu));

ix += 6;

}

else

{

/* encoding error */

delUCStringBuffer(wbuf);

return 0;

}

}

else

{

/* encoding error */

delUCStringBuffer(wbuf);

return 0;

}

}

return wbuf;

}

static int wchar2Utf8(wchar_t ch , StringBuffer *sb)

{

int ix = 0;

if (ch < 0x0080)

{

*stringBufferPostInc(sb) = (char)ch;

return 1;

}

if (ch < 0x0800)

{

*stringBufferPostInc(sb) = (char)(((ch & 0x07c0u) >> 6) | 0xc0u);

ix = 2;

goto l0;

}

else if (ch < 0x10000)

{

*stringBufferPostInc(sb) = (char)(((ch & 0xf000) >> 12) | 0xe0);

ix = 3;

goto l6;

}

else if (ch < 0x200000)

{

*stringBufferPostInc(sb) = (char)(((ch & 0x1c0000) >> 18) | 0xf0);

ix = 4;

goto l12;

}

else if (ch < 0x4000000)

{

*stringBufferPostInc(sb) = (char)(((ch & 0x3000000) >> 24) | 0xf80);

84

ix = 5;

goto l18;

}

else

{

*stringBufferPostInc(sb) = (char)(((ch & 0x40000000) >> 30) | 0xfc0);

ix = 6;

goto l24;

}

l24:

*stringBufferPostInc(sb) = (char)(((ch & 0x3f000000) >> 24) | 0x80);

l18:

*stringBufferPostInc(sb) = (char)(((ch & 0x00fc0000) >> 18) | 0x80);

l12:

*stringBufferPostInc(sb) = (char)(((ch & 0x0003f000) >> 12) | 0x80);

l6:

*stringBufferPostInc(sb) = (char)(((ch & 0x00000fc0) >> 6) | 0x80);

l0:

*stringBufferPostInc(sb) = (char)((ch & 0x0000003f) | 0x80);

return ix;

}

static StringBuffer *ucsToUtf8(wchar_t *wbuf , StringBuffer *sb)

{

int ix;

for (ix = 0; L’\0’ != wbuf[ix]; ++ix)

{

wchar2Utf8(wbuf[ix], sb);

}

return sb;

}

static StringBuffer *ucsToUtf8L(wchar_t *wbuf , int len , StringBuffer *sb)

{

int ix;

for (ix = 0; ix < len; ++ix)

{

wchar2Utf8(wbuf[ix], sb);

}

return sb;

}

static int rprintf(const char *format , ...)

{

int rtn;

va_list args;

va_start(args , format);

rtn = vfprintf(stdout , format , args);

va_end(args);

if (0 != opt_dupfile)

{

va_start(args , format);

vfprintf(opt_dupfile , format , args);

va_end(args);

}

return rtn;

}

static int rwprintf(const wchar_t *format , ...)

{

int rtn;

va_list args;

85

va_start(args , format);

rtn = vfwprintf(stdout , format , args);

va_end(args);

if (0 != opt_dupfile)

{

va_start(args , format);

vfwprintf(opt_dupfile , format , args);

va_end(args);

}

return rtn;

}

static long timediff(struct timeval *tfm , struct timeval *tto)

{

return (tto ->tv_sec * 1000000 + tto ->tv_usec) - (tfm ->tv_sec * 1000000 +

tfm ->tv_usec);

}

static int exec(const char *fileName)

{

FILE *file , *ofil;

unsigned char *buf;

char *cp, *outf;

wchar_t *cbuf , *wdoc;

long siz;

struct stat statbuf;

NpxUCElement *dsobj;

void *exobj;

UCStringBuffer *ucsb;

clock_t sttime = 0, entime = 0;

struct timeval sttv , entv;

int rtn = 0, ix;

unsigned len;

struct rusage rsc;

if (0 == (file = fopen(fileName , "rb")))

{

fprintf(stderr , "unable to open %s\n", fileName);

rtn = -1;

goto ex1;

}

dsobj = 0;

fstat(fileno(file), &statbuf);

siz = statbuf.st_size;

buf = mAlloc ((int) siz + 1, "execbuf");

if (siz != fread(buf , sizeof(char), siz , file))

{

fprintf(stderr , "error reading file %s (size %ld)\n", fileName , siz);

rtn = -1;

goto ex2;

}

buf[siz] = ’\0’;

rprintf("read %ld byte file %s\n", siz , fileName);

for (ix = 1; ix <= opt_repeat; ++ix)

{

if (0 != opt_expat)

{

getrusage(0, &rsc);

sttv = rsc.ru_utime;

// sttime = clock ();

86

if (0 == (exobj = expatDeserialize(buf , (int)siz)))

{

fprintf(stderr , "expat deserialize failed\n");

rtn = -1;

goto ex2;

}

// entime = clock ();

// rprintf (" DOM build time %ld\n", getDOMTime ());

getrusage(0, &rsc);

entv = rsc.ru_utime;

rprintf("rusage CPU %ld\n", timediff (&sttv , &entv));

delDocumentTree(exobj);

}

else

{

getrusage(0, &rsc);

sttv = rsc.ru_utime;

// sttime = clock ();

if (0 == (dsobj = deserializeUC(buf , (int)siz)))

{

fprintf(stderr , "deserializeUC failed\n");

rtn = -1;

goto ex2;

}

// entime = clock ();

// rprintf (" TAM build time %ld\n", getTAMTime ());

getrusage(0, &rsc);

entv = rsc.ru_utime;

rprintf("rusage CPU %ld\n", timediff (&sttv , &entv));

if (ix != opt_repeat)

{

cbuf = self(dsobj).getTransaction(dsobj);

mFree(cbuf , "wcxact");

delNpxUCElement(dsobj);

dsobj = 0;

}

}

rprintf("deserializeUC time %ld (clocks per sec %d)\n", entime - sttime ,

CLOCKS_PER_SEC);

}

if (opt_writexmlc != 0)

{

ucsb = newUCStringBuffer ((UCStringBuffer *)0, 0);

rtn = npx2XMLUC(dsobj , ucsb , 1, (int)1);

wdoc = ucstringBufferToString(ucsb , 0);

if (opt_writexmlc != 0 && 0 != (cp = strstr(fileName , ".txt")) && 4 ==

strlen(cp))

{

siz = ucstringBufferGetOffset(ucsb) - 1;

cp = stringCut(fileName , cp + 1);

outf = stringConcat(cp, "xml.outc");

delString(cp);

if (0 == (ofil = fopen(outf , "wb")))

{

fprintf(stderr , "unable to open %s\n", outf);

rtn = -1;

goto ex3;

}

87

rprintf("writing %s\n", outf);

if (siz != fwrite(wdoc , sizeof(char), siz , ofil))

{

fprintf(stderr , "error writing file %s (size %ld)\n", outf , siz);

rtn = -1;

goto ex4;

}

ex4:

fclose(ofil);

ex3:

delString(outf);

}

if (1 == opt_reserialize)

fwprintf(stdout , L"%ls\n", wdoc);

mFree(wdoc , "ucsBuf2string");

delUCStringBuffer(ucsb);

}

/* if (1 == opt_reserialize && 0 == opt_writexmlc)

{

doc = serialize (dsobj);

fprintf(stdout , "%s\n", doc);

delString (doc);

}*/

ex2:

if (0 != dsobj)

{

cbuf = self(dsobj).getTransaction(dsobj);

mFree(cbuf , "wcxact2");

delNpxUCElement(dsobj);

}

mFree(buf , "execbufF");

fclose(file);

ex1:

return rtn;

}

static int execDir(const char *dirName)

{

DIR *d;

struct dirent *dir;

char *cp, *path;

int ix, found;

d = opendir(dirName);

if (0 != d)

{

while ((dir = readdir(d)) != NULL)

{

found = 0;

for (ix = 0; 0 != opt_suffixes[ix]; ++ix)

{

if (0 != (cp = strstr(dir ->d_name , opt_suffixes[ix])) &&

strlen(opt_suffixes[ix]) == strlen(cp))

{

found = 1;

break;

}

}

if (0 == found)

continue;

88

rprintf("processing %s\n", dir ->d_name);

path = stringConcatV(dirName , separator , dir ->d_name , (char *)0);

exec(path);

delString(path);

}

closedir(d);

}

else

{

fprintf(stderr , "cannot open directory %s\n", dirName);

return -1;

}

return 0;

}

static void usage(const char *pgm)

{

fprintf(stderr , "%s [-e] [-h] [-ofile] [-rn] [-v] [-w] [-x] path\n", pgm);

fprintf(stderr , " -e deserialize input XML files using Expat\n");

fprintf(stderr , " -h display this help information\n");

fprintf(stderr , " -ofile duplicate stdout to this file\n");

fprintf(stderr , " -rn repeat the deserialization n times\n");

fprintf(stderr , " -ssuffix if path is a directory , input files have this

suffix (default .txt)\n");

fprintf(stderr , " (may be repeated for a maximum of 9 suffixes)\n");

fprintf(stderr , " -v display the version and exit\n");

fprintf(stderr , " -w write deserialized output to .xml.outc file\n");

fprintf(stderr , " -x write reserialized XML version to .xml.outc file\n");

exit (1);

}

int main(int argc , const char *argv [])

{

struct stat statbuf;

int n, ni, ss, sl;

if (setjmp(env))

{

exit (254);

}

ss = 0;

ni = 1;

for (n = 1; n < argc; n += ni)

{

if (argv[n][0] == ’-’)

{

switch (argv[n][1])

{

case ’e’:

opt_expat = 1;

break;

case ’h’:

usage(argv [0]);

break;

case ’o’:

opt_dupfile = fopen(&argv[n][2], "wb");

break;

case ’r’:

opt_repeat = (int) strtol (&argv[n][2], (char **) 0, 10);

break;

case ’s’:

89

if (ss < 9)

{

sl = (int)strlen (&argv[n][2]);

opt_suffixes[ss] = mAlloc(sl + 1, "optSuf");

memcpy(opt_suffixes[ss], &argv[n][2], sl);

opt_suffixes[ss][sl] = ’\0’;

++ss;

}

break;

case ’v’:

fprintf(stderr , "Version: %s\n", version);

exit (1);

case ’w’:

opt_writexmlc = 1;

break;

case ’x’:

opt_reserialize = 1;

break;

default:

usage(argv [0]);

break;

}

}

}

if (0 == ss)

{

opt_suffixes[ss] = mAlloc(5, "optSuf");

strcpy(opt_suffixes[ss], ".txt");

++ss;

}

opt_suffixes[ss] = 0;

for (n = 1; n < argc; n += ni)

{

if (argv[n][0] != ’-’)

{

if (0 <= lstat(argv[n], &statbuf))

{

if (0 != ((unsigned)S_IFDIR & statbuf.st_mode))

{

execDir(argv[n]);

}

else if (0 != ((unsigned)S_IFREG & statbuf.st_mode))

{

exec(argv[n]);

}

}

else

{

fprintf(stderr , "cannot stat %s\n", argv[n]);

}

}

}

for (n = 0; 0 != opt_suffixes[n]; n +=1)

{

mFree(opt_suffixes[n], "optSuf");

}

#ifdef MEMORY_TRAK

trakReport(__FILE__);

90

#endif

return 0;

}

Listing A.3: NpxDeserial.c

91

